1,752 research outputs found

    Para-cresol production by Clostridium difficile affects microbial diversity and membrane integrity of Gram-negative bacteria

    Get PDF
    Clostridium difficile is a Gram-positive spore-forming anaerobe and a major cause of antibiotic-associated diarrhoea. Disruption of the commensal microbiota, such as through treatment with broad-spectrum antibiotics, is a critical precursor for colonisation by C. difficile and subsequent disease. Furthermore, failure of the gut microbiota to recover colonisation resistance can result in recurrence of infection. An unusual characteristic of C. difficile among gut bacteria is its ability to produce the bacteriostatic compound para-cresol (p-cresol) through fermentation of tyrosine. Here, we demonstrate that the ability of C. difficile to produce p-cresol in vitro provides a competitive advantage over gut bacteria including Escherichia coli, Klebsiella oxytoca and Bacteroides thetaiotaomicron. Metabolic profiling of competitive co-cultures revealed that acetate, alanine, butyrate, isobutyrate, p-cresol and p-hydroxyphenylacetate were the main metabolites responsible for differentiating the parent strain C. difficile (630Δerm) from a defined mutant deficient in p-cresol production. Moreover, we show that the p-cresol mutant displays a fitness defect in a mouse relapse model of C. difficile infection (CDI). Analysis of the microbiome from this mouse model of CDI demonstrates that colonisation by the p-cresol mutant results in a distinctly altered intestinal microbiota, and metabolic profile, with a greater representation of Gammaproteobacteria, including the Pseudomonales and Enterobacteriales. We demonstrate that Gammaproteobacteria are susceptible to exogenous p-cresol in vitro and that there is a clear divide between bacterial Phyla and their susceptibility to p-cresol. In general, Gram-negative species were relatively sensitive to p-cresol, whereas Gram-positive species were more tolerant. This study demonstrates that production of p-cresol by C. difficile has an effect on the viability of intestinal bacteria as well as the major metabolites produced in vitro. These observations are upheld in a mouse model of CDI, in which p-cresol production affects the biodiversity of gut microbiota and faecal metabolite profiles, suggesting that p-cresol production contributes to C. difficile survival and pathogenesis.Peer reviewedFinal Published versio

    The genealogy of judgement: towards a deep history of academic freedom

    Get PDF
    The classical conception of academic freedom associated with Wilhelm von Humboldt and the rise of the modern university has a quite specific cultural foundation that centres on the controversial mental faculty of 'judgement'. This article traces the roots of 'judgement' back to the Protestant Reformation, through its heyday as the signature feature of German idealism, and to its gradual loss of salience as both a philosophical and a psychological concept. This trajectory has been accompanied by a general shrinking in the scope of academic freedom from the promulgation of world-views to the offering of expert opinion

    Mep72, a metzincin protease that is preferentially secreted by biofilms of Pseudomonas aeruginosa.

    Get PDF
    In this work, we compared the profile of proteins secreted by planktonic and biofilm cultures of Pseudomonas aeruginosa using two-dimensional difference gel electrophoresis (2D-DiGE). This revealed that a novel metzincin protease, Mep72, was secreted during biofilm growth. Subsequent Western blotting and reverse transcription-PCR (RT-PCR) analyses demonstrated that Mep72 was expressed only during biofilm growth. Mep72 has a tridomain structure comprised of a metzincin protease-like domain and two tandem carbohydrate-binding domains. Unlike the only other metzincin (alkaline protease; AprA) in P. aeruginosa, Mep72 is secreted through the type II pathway and undergoes processing during export. During this processing, the metzincin domain is liberated from the carbohydrate-binding domains. This processing may be self-catalyzed, since purified Mep72 autodegraded in vitro. This autodegradation was retarded in the presence of alginate (an extracellular matrix component of many P. aeruginosa biofilms). The expression of full-length mep72 in Escherichia coli was toxic. However, this toxicity could be alleviated by coexpression of mep72 with the adjacent gene, bamI. Mep72 and BamI were found to form a protein-protein complex in vitro. 2D-DiGE revealed that the electrophoretic mobility of several discrete protein spots was altered in the biofilm secretome of an mep72 mutant, including type III secretion proteins (PopD, PcrV, and ExoS) and a flagellum-associated protein (FliD). Mep72 was found to bind directly to ExoS and PcrV and to affect the processing of these proteins in the biofilm secretome. We conclude that Mep72 is a secreted biofilm-specific regulator that affects the processing of a very specific subset of virulence factors.This study was funded by the BBSRC, the Isaac Newton Trust (Cambridge), and a grant from the Japanese Society for Acute Infection to K.N.The paper was originally published by the American Society for Microbiology in the Journal of Bacteriology with a CC-BY licence (IJ Passmore, K Nishikawa, KS Lilley, SD Bowden, JCS Chung, M Welch, Journal of Bacteriology 2015, 197, 762–773

    Parental bonding and identity style as correlates of self-esteem among adult adoptees and nonadoptees

    Get PDF
    Adult adoptees (n equals 100) and non-adoptees (n equals 100) were compared with regard to selfesteem, identity processing style, and parental bonding. While some differences were found with regard to self-esteem, maternal care, and maternal overprotection, these differences were qualified by reunion status such that only reunited adoptees differed significantly from nonadoptees. Moreover, hierarchical regression analyses indicated that parental bonding and identity processing style were more important than adoptive status per se in predicting self esteem. Implications for practitioners who work with adoptees are discussed

    Near-infrared wavelength intersubband transitions in GaN∕AlN short period superlattices

    Get PDF
    Intersubband transitions in GaN∕AlN short period superlattices prepared by molecular beam epitaxy were investigated using the optical absorption technique. The peak position wavelengths of these transitions are found to span the spectral range of 1.35–2.90μm for samples cut into 45° waveguides with GaNquantum well thicknesses ranging between 1.70 and2.41nm. The Fermi energy levels are estimated from the carrier concentrations, which were measured using an electrochemical capacitance-voltage profiler. The well widths were inferred from comparing the measured peak position energy of the intersubband transitions and the bound state energy levels calculated using the transfer matrix method
    corecore