3,977 research outputs found

    A Comparison of a Full Time Grazing and a Partial Storage Feeding System, for Dairy Cows

    Get PDF
    Partial storage feeding has been adopted by a number of Northern Ireland dairy farmers in recent years. This is due in part to increasing cow numbers, and as such, insufficient pasture close to the milking parlour to permit full time grazing. Partial storage feeding may also have environmental benefits, as well as reducing labour requirements associated with \u27droving\u27 and pasture management. In view of this, a study was undertaken to examine animal performance with either a full-time grazing, or a partial storage feeding regime

    Results of correlations for transition location on a clean-up glove installed on an F-14 aircraft and design studies for a laminar glove for the X-29 aircraft accounting for spanwise pressure gradient

    Get PDF
    Results of correlative and design studies for transition location, laminar and turbulent boundary-layer parameters, and wake drag for forward swept and aft swept wings are presented. These studies were performed with the use of an improved integral-type boundary-layer and transition-prediction methods. Theoretical predictions were compared with flight measurements at subsonic and transonic flow conditions for the variable aft swept wing F-14 aircraft for which experimental pressure distributions, transition locations, and turbulent boundary-layer velocity profiles were measured. Flight data were available at three spanwise stations for several values of sweep, freestream unit Reynolds number, Mach numbers, and lift coefficients. Theory/experiment correlations indicate excellent agreement for both transition location and turbulent boundary-layer parameters. The results of parametric studies performed during the design of a laminar glove for the forward swept wing X-29 aircraft are also presented. These studies include the effects of a spanwise pressure gradient on transition location and wake drag for several values of freestream Reynolds numbers at a freestream Mach number of 0.9

    Dairy Cow Performance Associated with Two Contrasting Silage Feeding Systems

    Get PDF
    As a result of increasing labour costs, the lack of skilled labour, and the desire of many farmers to reduce their working hours, there is considerable interest in using simple feeding systems for dairy cows. A study was conducted to compare two silage feeding systems that differed in complexity

    Resonant hopping of a robot controlled by an artificial neural oscillator

    Full text link
    "The bouncing gaits of terrestrial animals (hopping, running, trotting) can be modeled as a hybrid dynamic system, with spring-mass dynamics during stance and ballistic motion during the aerial phase. We used a simple hopping robot controlled by an artificial neural oscillator to test the ability of the neural oscillator to adaptively drive this hybrid dynamic system. The robot had a single joint, actuated by an artificial pneumatic muscle in series with a tendon spring. We examined how the oscillator-robot system responded to variation in two neural control parameters: descending neural drive and neuromuscular gain. We also tested the ability of the oscillator-robot system to adapt to variations in mechanical properties by changing the series and parallel spring stiffnesses. Across a 100-fold variation in both supraspinal gain and muscle gain, hopping frequency changed by less than 10%. The neural oscillator consistently drove the system at the resonant half-period for the stance phase, and adapted to a new resonant half-period when the muscle series and parallel stiffnesses were altered. Passive cycling of elastic energy in the tendon accounted for 70-79% of the mechanical work done during each hop cycle. Our results demonstrate that hopping dynamics were largely determined by the intrinsic properties of the mechanical system, not the specific choice of neural oscillator parameters. The findings provide the first evidence that an artificial neural oscillator will drive a hybrid dynamic system at partial resonance."http://deepblue.lib.umich.edu/bitstream/2027.42/64204/1/bb8_2_026001.pd

    Impact of slurry application method on phosphorus loss in runoff from grassland soils during periods of high soil moisture content

    Get PDF
    Abstract Previous studies have reported that the trailing shoe application technique reduces phosphorus (P) in the runoff postslurry application when compared to the traditional splash-plate application technique. However, the effectiveness of the trailing-shoe technique as a means of reducing P losses has not been evaluated when slurry is applied during periods of high soil moisture levels and lower herbage covers. To address this issue, three treatments were examined in a 3 × 4 factorial design split-plot experiment, with treatments comprising three slurry treatments: control (no slurry), splashplate and trailing-shoe, and four slurry application dates: 7 December, 18 January, 1 March and 10 April. Dairy cow slurry was applied at a rate of 20 m3/ha, while simulated runoff was generated 2, 9 and 16 days later and analysed for a range of P fractions. Dissolved reactive P concentrations in runoff at day two was 41% lower when slurry was applied using the trailing-shoe technique, compared to the splash-plate technique (P &lt; 0.05). In addition, P concentrations in runoff were higher (P &lt; 0.05) from slurry applied in December and March compared to slurry applied in January or April, coinciding with periods of higher soil moisture contents. While the latter highlights that ‘calendar’-based non-spreading periods might not always achieve the desired consequences, the study demonstrated that further field-scale investigations into the trailing shoe as a mitigation measure to reduced P loss from agricultural soils is warranted.</jats:p

    Use of MMG signals for the control of powered orthotic devices: Development of a rectus femoris measurement protocol

    Get PDF
    Copyright © 2009 Rehabilitation Engineering and Assistive Technology Society (RESNA). This is an Author's Accepted Manuscript of an article published in Assistive Technology, 21(1), 1 - 12, 2009, copyright Taylor & Francis, available online at: http://www.tandfonline.com/10.1080/10400430902945678.A test protocol is defined for the purpose of measuring rectus femoris mechanomyographic (MMG) signals. The protocol is specified in terms of the following: measurement equipment, signal processing requirements, human postural requirements, test rig, sensor placement, sensor dermal fixation, and test procedure. Preliminary tests of the statistical nature of rectus femoris MMG signals were performed, and Gaussianity was evaluated by means of a two-sided Kolmogorov-Smirnov test. For all 100 MMG data sets obtained from the testing of two volunteers, the null hypothesis of Gaussianity was rejected at the 1%, 5%, and 10% significance levels. Most skewness values were found to be greater than 0.0, while all kurtosis values were found to be greater than 3.0. A statistical convergence analysis also performed on the same 100 MMG data sets suggested that 25 MMG acquisitions should prove sufficient to statistically characterize rectus femoris MMG. This conclusion is supported by the qualitative characteristics of the mean rectus femoris MMG power spectral densities obtained using 25 averages

    The Effect of Inclusion of a Range of Supplementary Feeds on Herbage Intake, Total Dry Matter Intake and Substitution Rate in Grazing Dairy Cows

    Get PDF
    The milk production potential of dairy cows has increased substantially over the past two decades. This development presents new challenges for managing dairy cows during grazing, particularly where the objective is to maximise the proportion of energy in the diet derived from forage. The objective of the current study was to explore supplementation strategies to maintain high total forage intakes from grazed grass supplemented with alternative forage supplements in dairy cows during the grazing season. A second objective of the study was to examine the effect of supplement on substitution rate (SR) and milk yield response

    Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton

    Get PDF
    Abstract Background Robotic ankle exoskeletons can provide assistance to users and reduce metabolic power during walking. Our research group has investigated the use of proportional myoelectric control for controlling robotic ankle exoskeletons. Previously, these controllers have relied on a constant gain to map user’s muscle activity to actuation control signals. A constant gain may act as a constraint on the user, so we designed a controller that dynamically adapts the gain to the user’s myoelectric amplitude. We hypothesized that an adaptive gain proportional myoelectric controller would reduce metabolic energy expenditure compared to walking with the ankle exoskeleton unpowered because users could choose their preferred control gain. Methods We tested eight healthy subjects walking with the adaptive gain proportional myoelectric controller with bilateral ankle exoskeletons. The adaptive gain was updated each stride such that on average the user’s peak muscle activity was mapped to maximal power output of the exoskeleton. All subjects participated in three identical training sessions where they walked on a treadmill for 50 minutes (30 minutes of which the exoskeleton was powered) at 1.2 ms-1. We calculated and analyzed metabolic energy consumption, muscle recruitment, inverse kinematics, inverse dynamics, and exoskeleton mechanics. Results Using our controller, subjects achieved a metabolic reduction similar to that seen in previous work in about a third of the training time. The resulting controller gain was lower than that seen in previous work (β=1.50±0.14 versus a constant β=2). The adapted gain allowed users more total ankle joint power than that of unassisted walking, increasing ankle power in exchange for a decrease in hip power. Conclusions Our findings indicate that humans prefer to walk with greater ankle mechanical power output than their unassisted gait when provided with an ankle exoskeleton using an adaptive controller. This suggests that robotic assistance from an exoskeleton can allow humans to adopt gait patterns different from their normal choices for locomotion. In our specific experiment, subjects increased ankle power and decreased hip power to walk with a reduction in metabolic cost. Future exoskeleton devices that rely on proportional myolectric control are likely to demonstrate improved performance by including an adaptive gain.http://deepblue.lib.umich.edu/bitstream/2027.42/115879/1/12984_2015_Article_86.pd

    Identification of mass–spring–damper model of walking humans

    Get PDF
    Interaction of walking people with vibrating structures is known to be an important yet challenging phenomenon to simulate. Despite of its considerable effects on the structural response, no properly formulated and experimentally verified model currently exists to simulate this interaction in the vertical direction. This work uses a single-degree-of-freedom mass–spring–damper model of a walking human to simulate its interaction with a vibrating structure. Extensive frequency response function measurements were performed on a test structure that was occupied by more than a hundred test subjects walking in various group sizes and at different times in 23 tests. The identified modal properties of the occupied structure were used in three different identification procedures to estimate the parameters of the walking human model. A discrete model of human–structure system was used to simulate interaction of each walking person with the structure. The analysis identified the range of 2.75–3.00 Hz for the natural frequency and 27.5%–30% for the damping ratio of the model of a walking human, having constant mass of 70 kg. The extent of the experimental data and the measurement details, diversity of loading scenarios and consistency of the results of the different identification procedures, provided high level of confidence on the suggested parameters for the single-degree-of-freedom walking human model.UK Engineering and Physical Sciences Research Council (EPSRC
    • …
    corecore