16,085 research outputs found
Studies of Stellar Collapse and Black Hole Formation with the Open-Source Code GR1D
We discuss results from simulations of black hole formation in failing core-collapse supernovae performed with the code GR1D, a new open-source Eulerian spherically-symmetric general-relativistic hydrodynamics code. GR1D includes rotation in an approximate way (1.5D) comes with multiple finite-temperature nuclear equations of state (EOS), and treats neutrinos in the post-core-bounce phase via a 3-flavor leakage scheme and a heating prescription. We chose the favored K_0 = 220 MeV-variant of the Lattimer & Swesty (1990) EOS and present collapse calculations using the progenitor models of Limongi & Chieffi (2006). We show that there is no direct (or “prompt”) black hole formation in the collapse of ordinary massive stars (8M_☉ ≲ M_(ZAMS) ≲ 100 M_☉) present first results from black hole formation simulations that include rotation
A theoretical study of microwave beam absorption by a rectenna
The rectenna's microwave power beam absorption limit was theoretically confirmed by two mathematical models descriptive of the microwave absorption process; first one model was based on the current sheet equivalency of a large planar array above a reflector and the second model, which was based on the properties of a waveguide with special imaging characteristics, quantified the electromagnetic modes (field configurations) in the immediate vicinity of a Rectenna element spacing which permit total power beam absorption by preventing unwanted modes from propagating (scattering) were derived using these models. Several factors causing unwanted scattering are discussed
Neutrino Signatures and the Neutrino-Driven Wind in Binary Neutron Star Mergers
We present VULCAN/2D multigroup flux-limited-diffusion radiation-hydrodynamics simulations of binary neutron star mergers, using the Shen equation of state, covering ≳ 100 ms, and starting from azimuthal-averaged two-dimensional slices obtained from three-dimensional smooth-particle-hydrodynamics simulations of Rosswog & Price for 1.4M☉ (baryonic) neutron stars with no initial spins, co-rotating spins, or counter-rotating spins. Snapshots are post-processed at 10 ms intervals with a multiangle neutrino-transport solver. We find polar-enhanced neutrino luminosities, dominated by ¯νe and “νμ” neutrinos at the peak, although νe emission may be stronger at late times. We obtain typical peak neutrino energies for νe, ¯νe, and “νμ” of ∼12, ∼16, and ∼22 MeV, respectively. The supermassive neutron star (SMNS) formed from the merger has a cooling timescale of ≾ 1 s. Charge-current neutrino reactions lead to the formation of a thermally driven bipolar wind with (M·) ∼ 10^−3 M☉ s^−1 and baryon-loading in the polar regions, preventing any production of a γ-ray burst prior to black hole formation. The large budget of rotational free energy suggests that magneto-rotational effects could produce a much-greater polar mass loss. We estimate that ≾ 10^−4 M☉ of material with an electron fraction in the range 0.1–0.2 becomes unbound during this SMNS phase as a result of neutrino heating. We present a new formalism to compute the νi ¯νi annihilation rate based on moments of the neutrino-specific intensity computed with our multiangle solver. Cumulative annihilation rates, which decay as ∼t^−1.8, decrease over our 100 ms window from a few ×1050 to ∼ 1049 erg s−1, equivalent to a few ×10^54 to ∼10^53 e−e+ pairs per second
Microelectromagnets for Trapping and Manipulating Ultracold Atomic Quantum Gases
We describe the production and characterization of microelectromagnets made
for trapping and manipulating atomic ensembles. The devices consist of 7
fabricated parallel copper conductors 3 micrometer thick, 25mm long, with
widths ranging from 3 to 30 micrometer, and are produced by electroplating a
sapphire substrate. Maximum current densities in the wires up to 6.5 * 10^6 A /
cm^2 are achieved in continuous mode operation. The device operates
successfully at a base pressure of 10^-11 mbar. The microstructures permit the
realization of a variety of magnetic field configurations, and hence provide
enormous flexibility for controlling the motion and the shape of Bose-Einstein
condensates.Comment: 4 pages, 3 figure
Neutrino-driven Turbulent Convection and Standing Accretion Shock Instability in Three-Dimensional Core-Collapse Supernovae
We conduct a series of numerical experiments into the nature of
three-dimensional (3D) hydrodynamics in the postbounce stalled-shock phase of
core-collapse supernovae using 3D general-relativistic hydrodynamic simulations
of a - progenitor star with a neutrino leakage/heating scheme. We
vary the strength of neutrino heating and find three cases of 3D dynamics: (1)
neutrino-driven convection, (2) initially neutrino-driven convection and
subsequent development of the standing accretion shock instability (SASI), (3)
SASI dominated evolution. This confirms previous 3D results of Hanke et al.
2013, ApJ 770, 66 and Couch & Connor 2014, ApJ 785, 123. We carry out
simulations with resolutions differing by up to a factor of 4 and
demonstrate that low resolution is artificially favorable for explosion in the
3D convection-dominated case, since it decreases the efficiency of energy
transport to small scales. Low resolution results in higher radial convective
fluxes of energy and enthalpy, more fully buoyant mass, and stronger neutrino
heating. In the SASI-dominated case, lower resolution damps SASI oscillations.
In the convection-dominated case, a quasi-stationary angular kinetic energy
spectrum develops in the heating layer. Like other 3D studies, we
find in the "inertial range," while theory and
local simulations argue for . We argue that
current 3D simulations do not resolve the inertial range of turbulence and are
affected by numerical viscosity up to the energy containing scale, creating a
"bottleneck" that prevents an efficient turbulent cascade.Comment: 24 pages, 15 figures. Accepted for publication in The Astrophysical
Journal. Added one figure and made minor modifications to text according to
suggestions from the refere
The runaway instability in general relativistic accretion disks
When an accretion disk falls prey to the runaway instability, a large portion
of its mass is devoured by the black hole within a few dynamical times. Despite
decades of effort, it is still unclear under what conditions such an
instability can occur. The technically most advanced relativistic simulations
to date were unable to find a clear sign for the onset of the instability. In
this work, we present three-dimensional relativistic hydrodynamics simulations
of accretion disks around black holes in dynamical space-time. We focus on the
configurations that are expected to be particularly prone to the development of
this instability. We demonstrate, for the first time, that the fully
self-consistent general relativistic evolution does indeed produce a runaway
instability.Comment: 5 pages, 3 figures, minor corrections to match published version in
MNRAS, +link to animatio
Inferring Core-Collapse Supernova Physics with Gravitational Waves
Stellar collapse and the subsequent development of a core-collapse supernova
explosion emit bursts of gravitational waves (GWs) that might be detected by
the advanced generation of laser interferometer gravitational-wave
observatories such as Advanced LIGO, Advanced Virgo, and LCGT. GW bursts from
core-collapse supernovae encode information on the intricate multi-dimensional
dynamics at work at the core of a dying massive star and may provide direct
evidence for the yet uncertain mechanism driving supernovae in massive stars.
Recent multi-dimensional simulations of core-collapse supernovae exploding via
the neutrino, magnetorotational, and acoustic explosion mechanisms have
predicted GW signals which have distinct structure in both the time and
frequency domains. Motivated by this, we describe a promising method for
determining the most likely explosion mechanism underlying a hypothetical GW
signal, based on Principal Component Analysis and Bayesian model selection.
Using simulated Advanced LIGO noise and assuming a single detector and linear
waveform polarization for simplicity, we demonstrate that our method can
distinguish magnetorotational explosions throughout the Milky Way (D <~ 10kpc)
and explosions driven by the neutrino and acoustic mechanisms to D <~ 2kpc.
Furthermore, we show that we can differentiate between models for rotating
accretion-induced collapse of massive white dwarfs and models of rotating iron
core collapse with high reliability out to several kpc.Comment: 22 pages, 9 figure
Effects of Self-field and Low Magnetic Fields on the Normal-Superconducting Phase Transition
Researchers have studied the normal-superconducting phase transition in the
high- cuprates in a magnetic field (the vortex-glass or Bose-glass
transition) and in zero field. Often, transport measurements in "zero field"
are taken in the Earth's ambient field or in the remnant field of a magnet. We
show that fields as small as the Earth's field will alter the shape of the
current vs. voltage curves and will result in inaccurate values for the
critical temperature and the critical exponents and , and can
even destroy the phase transition. This indicates that without proper screening
of the magnetic field it is impossible to determine the true zero-field
critical parameters, making correct scaling and other data analysis impossible.
We also show, theoretically and experimentally, that the self-field generated
by the current flowing in the sample has no effect on the current vs. voltage
isotherms.Comment: 4 pages, 4 figure
- …
