1,089 research outputs found

    Development and Initial Validation of a Questionnaire to Measure Health-Related Quality of Life of Adults with Common Variable Immune Deficiency: The CVID_QoL Questionnaire.

    Get PDF
    BACKGROUND: Generic health status quality of life (QoL) instruments have been used in patients with common variable immune deficiency (CVID). However, by their nature, these tools may over- or underestimate the impact of diseases on an individual's QoL. OBJECTIVE: The objective of this study was to develop and validate a questionnaire to measure specific-health-related QoL for adults with CVID (CVID_QoL). METHODS: The 32-item content of the CVID_QoL questionnaire was developed using focus groups and individual patient interviews. Validation studies included 118 adults with CVID who completed Short Form-36, Saint George Respiratory Questionnaire, General Health Questionnaire-12, and EuroQol-5D questionnaire in a single session. Principal component and factor analysis solutions identified 3 scores to be similar in number and content for each solution. Validation of 3 factor scores was performed by construct validity. Reproducibility, reliability, convergent validity, and discriminant validity were evaluated. Matrices consisting of correlations between the 32 items in the CVID_QOL were calculated. RESULTS: Factor analysis identified 3 dimensions: emotional functioning (EF), relational functioning (RF), and gastrointestinal and skin symptoms (GSS). The instrument had good internal consistency (Cronbach's alpha, min. 0.74 for GSS, max. 0.84 for RF, n = 118) and high reproducibility (intraclass correlation coefficient, min. 0.79 for RF, max 0.90 for EF, n = 27). EF and RF scores showed good convergent validity correlating with conceptually similar dimensions of other study scales. Acute and relapsing infections had a significant impact on EF and RF. CONCLUSIONS: This study provides evidence of the reliability and construct validity of the CVID_QoL to identify QoL issues in patients with CVID that may not be addressed by generic instruments

    Natural Killer Cell Lytic Granule Secretion Occurs through a Pervasive Actin Network at the Immune Synapse

    Get PDF
    Super-resolution imaging provides a new look at how the lytic granules in natural killer cells penetrate the filamentous actin network of the immunological synapse

    Experimental silicification of the extremophilic Archaea Pyrococcus abyssi and Methanocaldococcus jannaschii: applications in the search for evidence of life in early Earth and extraterrestrial rocks

    Get PDF
    International audienceHydrothermal activity was common on the early Earth and associated micro-organisms would most likely have included thermophilic to hyperthermophilic species. 3.5–3.3 billion-year-old, hydrothermally influenced rocks contain silicified microbial mats and colonies that must have been bathed in warm to hot hydrothermal emanations. Could they represent thermophilic or hyperthermophilic micro-organisms and if so, how were they preserved? We present the results of an experiment to silicify anaerobic, hyperthermophilic micro-organisms from the Archaea Domain Pyrococcus abyssi and Methanocaldococcus jannaschii, that could have lived on the early Earth. The micro-organisms were placed in a silica-saturated medium for periods up to 1 year. Pyrococcus abyssi cells were fossilized but the M. jannaschii cells lysed naturally after the exponential growth phase, apart from a few cells and cell remains, and were not silicified although their extracellular polymeric substances were. In this first simulated fossilization of archaeal strains, our results suggest that differences between species have a strong influence on the potential for different micro-organisms to be preserved by fossilization and that those found in the fossil record represent probably only a part of the original diversity. Our results have important consequences for biosignatures in hydrothermal or hydrothermally influenced deposits on Earth, as well as on early Mars, as environmental conditions were similar on the young terrestrial planets and traces of early Martian life may have been similarly preserved as silicified microfossils

    Experimental fossilisation of viruses from extremophilic Archaea

    Get PDF
    The role of viruses at different stages of the origin of life has recently been reconsidered. It appears that viruses may have accompanied the earliest forms of life, allowing the transition from an RNA to a DNA world and possibly being involved in the shaping of tree of life in the three domains that we know presently. In addition, a large variety of viruses has been recently identified in extreme environments, hosted by extremophilic microorganisms, in ecosystems considered as analogues to those of the early Earth. Traces of life on the early Earth were preserved by the precipitation of silica on the organic structures. We present the results of the first experimental fossilisation by silica of viruses from extremophilic Archaea (SIRV2 – <i>Sulfolobus islandicus</i> rod-shaped virus 2, TPV1 – <i>Thermococcus prieurii</i> virus 1, and PAV1 – <i>Pyrococcus abyssi</i> virus 1). Our results confirm that viruses can be fossilised, with silica precipitating on the different viral structures (proteins, envelope) over several months in a manner similar to that of other experimentally and naturally fossilised microorganisms. This study thus suggests that viral remains or traces could be preserved in the rock record although their identification may be challenging due to the small size of the viral particles
    • 

    corecore