76 research outputs found

    High probability of comorbidities in bronchial asthma in Germany

    Get PDF
    Clinical experience has shown that allergic and non-allergic respiratory, metabolic, mental, and cardiovascular disorders sometimes coexist with bronchial asthma. However, no study has been carried out that calculates the chance of manifestation of these disorders with bronchial asthma in Saarland and Rhineland-Palatinate, Germany. Using ICD10 diagnoses from health care institutions, the present study systematically analyzed the co-prevalence and odds ratios of comorbidities in the asthma population in Germany. The odds ratios were adjusted for age and sex for all comorbidities for patients with asthma vs. without asthma. Bronchial asthma was strongly associated with allergic and with a lesser extent to non-allergic comorbidities: OR 7.02 (95% CI:6.83–7.22) for allergic rhinitis; OR 4.98 (95%CI:4.67–5.32) allergic conjunctivitis; OR 2.41 (95%CI:2.33–2.52) atopic dermatitis; OR 2.47 (95%CI:2.16–2.82) food allergy, and OR 1.69 (95%CI:1.61–1.78) drug allergy. Interestingly, increased ORs were found for respiratory diseases: 2.06 (95%CI:1.64–2.58) vocal dysfunction; 1.83 (95%CI:1.74–1.92) pneumonia; 1.78 (95%CI:1.73–1.84) sinusitis; 1.71 (95%CI:1.65–1.78) rhinopharyngitis; 2.55 (95%CI:2.03–3.19) obstructive sleep apnea; 1.42 (95%CI:1.25–1.61) pulmonary embolism, and 3.75 (95%CI:1.64–8.53) bronchopulmonary aspergillosis. Asthmatics also suffer from psychiatric, metabolic, cardiac or other comorbidities. Myocardial infarction (OR 0.86, 95%CI:0.79–0.94) did not coexist with asthma. Based on the calculated chances of manifestation for these comorbidities, especially allergic and respiratory, to a lesser extent also metabolic, cardiovascular, and mental disorders should be taken into consideration in the diagnostic and treatment strategy of bronchial asthma

    CCAT-prime: a novel telescope for submillimeter astronomy

    Full text link
    The CCAT-prime telescope is a 6-meter aperture, crossed-Dragone telescope, designed for millimeter and sub-millimeter wavelength observations. It will be located at an altitude of 5600 meters, just below the summit of Cerro Chajnantor in the high Atacama region of Chile. The telescope's unobscured optics deliver a field of view of almost 8 degrees over a large, flat focal plane, enabling it to accommodate current and future instrumentation fielding >100k diffraction-limited beams for wavelengths less than a millimeter. The mount is a novel design with the aluminum-tiled mirrors nested inside the telescope structure. The elevation housing has an integrated shutter that can enclose the mirrors, protecting them from inclement weather. The telescope is designed to co-host multiple instruments over its nominal 15 year lifetime. It will be operated remotely, requiring minimum maintenance and on-site activities due to the harsh working conditions on the mountain. The design utilizes nickel-iron alloy (Invar) and carbon-fiber-reinforced polymer (CFRP) materials in the mirror support structure, achieving a relatively temperature-insensitive mount. We discuss requirements, specifications, critical design elements, and the expected performance of the CCAT-prime telescope. The telescope is being built by CCAT Observatory, Inc., a corporation formed by an international partnership of universities. More information about CCAT and the CCAT-prime telescope can be found at www.ccatobservatory.org.Comment: Event: SPIE Astronomical Telescope + Instrumentation, 2018, Austin, Texas, USA; Proceedings Volume 10700, Ground-based and Airborne Telescopes VII; 107005X (2018

    The intermuscular 3–7 Hz drive is not affected by distal proprioceptive input in myoclonus-dystonia

    Get PDF
    In dystonia, both sensory malfunctioning and an abnormal intermuscular low-frequency drive of 3–7 Hz have been found, although cause and effect are unknown. It is hypothesized that sensory processing is primarily disturbed and induces this drive. Accordingly, experimenter-controlled sensory input should be able to influence the frequency of the drive. In six genetically confirmed myoclonus-dystonia (MD) patients and six matched controls, the low-frequency drive was studied with intermuscular coherence analysis. External perturbations were applied mechanically to the wrist joint in small frequency bands (0–4, 4–8 and 8–12 Hz; ‘angle protocol) and at single frequencies (1, 5, 7 and 9 Hz; ‘torque’ protocol). The low-frequency drive was found in the neck muscles of 4 MD patients. In these patients, its frequency did not shift due to the perturbation. In the torque protocol, the externally applied frequencies could be detected in all controls and in the two patients without the common drive. The common low-frequency drive was not be affected by external perturbations in MD patients. Furthermore, the torque protocol did not induce intermuscular coherences at the applied frequencies in these patients, as was the case in healthy controls and in patients without the drive. This suggests that the dystonic 3–7 Hz drive is caused by a sensory-independent motor drive and sensory malfunctioning in MD might rather be a consequence than a cause of dystonia

    Rhythm Generation through Period Concatenation in Rat Somatosensory Cortex

    Get PDF
    Rhythmic voltage oscillations resulting from the summed activity of neuronal populations occur in many nervous systems. Contemporary observations suggest that coexistent oscillations interact and, in time, may switch in dominance. We recently reported an example of these interactions recorded from in vitro preparations of rat somatosensory cortex. We found that following an initial interval of coexistent gamma (∼25 ms period) and beta2 (∼40 ms period) rhythms in the superficial and deep cortical layers, respectively, a transition to a synchronous beta1 (∼65 ms period) rhythm in all cortical layers occurred. We proposed that the switch to beta1 activity resulted from the novel mechanism of period concatenation of the faster rhythms: gamma period (25 ms)+beta2 period (40 ms) = beta1 period (65 ms). In this article, we investigate in greater detail the fundamental mechanisms of the beta1 rhythm. To do so we describe additional in vitro experiments that constrain a biologically realistic, yet simplified, computational model of the activity. We use the model to suggest that the dynamic building blocks (or motifs) of the gamma and beta2 rhythms combine to produce a beta1 oscillation that exhibits cross-frequency interactions. Through the combined approach of in vitro experiments and mathematical modeling we isolate the specific components that promote or destroy each rhythm. We propose that mechanisms vital to establishing the beta1 oscillation include strengthened connections between a population of deep layer intrinsically bursting cells and a transition from antidromic to orthodromic spike generation in these cells. We conclude that neural activity in the superficial and deep cortical layers may temporally combine to generate a slower oscillation

    Ulnar-sided wrist pain. II. Clinical imaging and treatment

    Get PDF
    Pain at the ulnar aspect of the wrist is a diagnostic challenge for hand surgeons and radiologists due to the small and complex anatomical structures involved. In this article, imaging modalities including radiography, arthrography, ultrasound (US), computed tomography (CT), CT arthrography, magnetic resonance (MR) imaging, and MR arthrography are compared with regard to differential diagnosis. Clinical imaging findings are reviewed for a more comprehensive understanding of this disorder. Treatments for the common diseases that cause the ulnar-sided wrist pain including extensor carpi ulnaris (ECU) tendonitis, flexor carpi ulnaris (FCU) tendonitis, pisotriquetral arthritis, triangular fibrocartilage complex (TFCC) lesions, ulnar impaction, lunotriquetral (LT) instability, and distal radioulnar joint (DRUJ) instability are reviewed

    The Body Action and Posture Coding System (BAP): Development and Reliability

    Get PDF
    Several methods are available for coding body movement in nonverbal behavior research, but there is no consensus on a reliable coding system that can be used for the study of emotion expression. Adopting an integrative approach, we developed a new method, the Body Action and Posture (BAP) coding system, for the time-aligned micro description of body movement on an anatomical level (different articulations of body parts), a form level (direction and orientation of movement), and a functional level (communicative and self-regulatory functions). We applied the system to a new corpus of acted emotion portrayals, examined its comprehensiveness and demonstrated intercoder reliability at three levels: a) occurrence, b) temporal precision and c) segmentation. We discuss issues for further validation and propose some research applications
    corecore