9,785 research outputs found
Exploratory wind tunnel tests of a shock-swallowing air data sensor at a Mach number of approximately 1.83
The test probe was designed to measure free-stream Mach number and could be incorporated into a conventional airspeed nose boom installation. Tests were conducted in the Langley 4-by 4-foot supersonic pressure tunnel with an approximate angle of attack test range of -5 deg to 15 deg and an approximate angle of sideslip test range of + or - 4 deg. The probe incorporated a variable exit area which permitted internal flow. The internal flow caused the bow shock to be swallowed. Mach number was determined with a small axially movable internal total pressure tube and a series of fixed internal static pressure orifices. Mach number error was at a minimum when the total pressure tube was close to the probe tip. For four of the five tips tested, the Mach number error derived by averaging two static pressures measured at horizontally opposed positions near the probe entrance were least sensitive to angle of attack changes. The same orifices were also used to derive parameters that gave indications of flow direction
MAESTRO, CASTRO, and SEDONA -- Petascale Codes for Astrophysical Applications
Performing high-resolution, high-fidelity, three-dimensional simulations of
Type Ia supernovae (SNe Ia) requires not only algorithms that accurately
represent the correct physics, but also codes that effectively harness the
resources of the most powerful supercomputers. We are developing a suite of
codes that provide the capability to perform end-to-end simulations of SNe Ia,
from the early convective phase leading up to ignition to the explosion phase
in which deflagration/detonation waves explode the star to the computation of
the light curves resulting from the explosion. In this paper we discuss these
codes with an emphasis on the techniques needed to scale them to petascale
architectures. We also demonstrate our ability to map data from a low Mach
number formulation to a compressible solver.Comment: submitted to the Proceedings of the SciDAC 2010 meetin
PTF11kx: A Type Ia Supernova with Hydrogen Emission Persisting After 3.5 Years
The optical transient PTF11kx exhibited both the characteristic spectral
features of Type Ia supernovae (SNe Ia) and the signature of ejecta interacting
with circumstellar material (CSM) containing hydrogen, indicating the presence
of a nondegenerate companion. We present an optical spectrum at days
after peak from Keck Observatory, in which the broad component of H
emission persists with a similar profile as in early-time observations. We also
present IRAC detections obtained and days after peak,
and an upper limit from ultraviolet imaging at days. We interpret
our late-time observations in context with published results - and reinterpret
the early-time observations - in order to constrain the CSM's physical
parameters and compare to theoretical predictions for recurrent nova systems.
We find that the CSM's radial extent may be several times the distance between
the star and the CSM's inner edge, and that the CSM column density may be two
orders of magnitude lower than previous estimates. We show that the H
luminosity decline is similar to other SNe with CSM interaction, and
demonstrate how our infrared photometry is evidence for newly formed,
collisionally heated dust. We create a model for PTF11kx's late-time CSM
interaction and find that X-ray reprocessing by photoionization and
recombination cannot reproduce the observed H luminosity, suggesting
that the X-rays are thermalized and that H radiates from collisional
excitation. Finally, we discuss the implications of our results regarding the
progenitor scenario and the geometric properties of the CSM for the PTF11kx
system.Comment: 15 pages, 8 figures, 3 tables; submitted to Ap
Development of a technology adoption and usage prediction tool for assistive technology for people with dementia
This article is available open access through the publisher’s website at the link below. Copyright @ The Authors 2013.In the current work, data gleaned from an assistive technology (reminding technology), which has been evaluated with people with Dementia over a period of several years was retrospectively studied to extract the factors that contributed to successful adoption. The aim was to develop a prediction model with the capability of prospectively assessing whether the assistive technology would be suitable for persons with Dementia (and their carer), based on user characteristics, needs and perceptions. Such a prediction tool has the ability to empower a formal carer to assess, through a very limited amount of questions, whether the technology will be adopted and used.EPSR
Nebular models of sub-chandrasekhar mass type ia supernovae: Clues to the origin of ca-rich transients
We use non-local thermal equilibrium radiative transport modeling to examine observational signatures of sub- Chandrasekhar mass double detonation explosions in the nebular phase. Results range from spectra that look like typical and subluminous Type Ia supernovae (SNe) for higher mass progenitors to spectra that look like Ca-rich transients for lower mass progenitors. This ignition mechanism produces an inherent relationship between emission features and the progenitor mass as the ratio of the nebular [Ca II]/[Fe III] emission lines increases with decreasing white dwarf mass. Examining the [Ca II]/[Fe III] nebular line ratio in a sample of observed SNe we find further evidence for the two distinct classes of SNe Ia identified in Polin et al. by their relationship between Si II velocity and B-band magnitude, both at time of peak brightness. This suggests that SNe Ia arise from more than one progenitor channel, and provides an empirical method for classifying events based on their physical origin. Furthermore, we provide insight to the mysterious origin of Ca-rich transients. Low-mass double detonation models with only a small mass fraction of Ca (1%) produce nebular spectra that cool primarily through forbidden [Ca II] emission
Near-infrared observations of type Ia supernovae: The best known standard candle for cosmology
We present an analysis of the Hubble diagram for 12 Type Ia supernovae (SNe
Ia) observed in the near-infrared J and H bands. We select SNe exclusively from
the redshift range 0.03 < z < 0.09 to reduce uncertainties coming from peculiar
velocities while remaining in a cosmologically well-understood region. All of
the SNe in our sample exhibit no spectral or B-band light-curve peculiarities
and lie in the B-band stretch range of 0.8-1.15. Our results suggest that SNe
Ia observed in the near-infrared (NIR) are the best known standard candles. We
fit previously determined NIR light-curve templates to new high-precision data
to derive peak magnitudes and to determine the scatter about the Hubble line.
Photometry of the 12 SNe is presented in the natural system. Using a standard
cosmology of (H_0, Omega_m, Lambda) = (70,0.27,0.73) we find a median J-band
absolute magnitude of M_J = -18.39 with a scatter of 0.116 and a median H-band
absolute magnitude of M_H = -18.36 with a scatter of 0.085. The scatter in the
H band is the smallest yet measured. We search for correlations between
residuals in the J- and H-band Hubble diagrams and SN properties, such as SN
colour, B-band stretch and the projected distance from host-galaxy centre. The
only significant correlation is between the J-band Hubble residual and the J-H
pseudo-colour. We also examine how the scatter changes when fewer points in the
near-infrared are used to constrain the light curve. With a single point in the
H band taken anywhere from 10 days before to 15 days after B-band maximum light
and a prior on the date of H-band maximum set from the date of B-band maximum,
we find that we can measure distances to an accuracy of 6%. The precision of
SNe Ia in the NIR provides new opportunities for precision measurements of both
the expansion history of the universe and peculiar velocities of nearby
galaxies.Comment: 6 pages, 2 figures. Accepted for publication in MNRA
- …
