2,199 research outputs found

    Neutrino dispersion relation in a magnetized multi-stream matter background

    Full text link
    We study the propagation of a neutrino in a medium that consists of two or more thermal backgrounds of electrons and nucleons moving with some relative velocity, in the presence of a static and homogeneous electromagnetic field. We calculate the neutrino self-energy and dispersion relation using the linear thermal Schwinger propagator, we give the formulas for the dispersion relation and discuss general features of the results obtained, in particular the effects of the stream contributions. As a specific example we discuss in some detail the case of a magnetized two-stream electron, i.e., two electron backgrounds with a relative velocity v⃗\vec v in the presence of a magnetic field. For a neutrino propagating with momentum k⃗\vec k, in the presence of the stream the neutrino dispersion relation acquires an anisotropic contribution of the form k^⋅v⃗\hat k\cdot\vec v in addition to the well known term k^⋅B⃗\hat k\cdot\vec B, as well as an additional contribution proportional to B⃗⋅v⃗\vec B\cdot\vec v. We consider the contribution from a nucleon stream background as an example of other possible stream backgrounds, and comment on possible generalizations to take into account the effects of inhomogeneous fields. We explain why a term of the form k^⋅(v⃗×B⃗)\hat k\cdot(\vec v\times\vec B) does not appear in the dispersion relation in the constant field case, while a term of similar form can appear in the presence of an inhomogeneous field involving its gradient.Comment: Title changed, 21 pages, 1 figur

    Couplings in coupled channels versus wave functions: application to the X(3872) resonance

    Get PDF
    We perform an analytical study of the scattering matrix and bound states in problems with many physical coupled channels. We establish the relationship of the couplings of the states to the different channels, obtained from the residues of the scattering matrix at the poles, with the wave functions for the different channels. The couplings basically reflect the value of the wave functions around the origin in coordinate space. In the concrete case of the X(3872) resonance, understood as a bound state of \ddn and \ddc (and c.c.c.c.), with the \ddn loosely bound, we find that the couplings to the two channels are essentially equal leading to a state of good isospin I=0 character. This is in spite of having a probability for finding the \ddn state much larger than for \ddc since the loosely bound channel extends further in space. The analytical results, obtained with exact solutions of the Schr\"odinger equation for the wave functions, can be useful in general to interpret results found numerically in the study of problems with unitary coupled channels methods.Comment: 14 pages, 4 figure

    Isospin breaking effects in the dynamical generation of the X(3872)

    Full text link
    We have studied isospin breaking effects in the X(3872) resonance and found a natural explanation for the branching fraction of the X decaying to J/ψJ/\psi with two and three pions being close to unit. Within our framework the X(3872) is a dynamically generated resonance in coupled channels. We also study the relationship between the couplings of the resonance to the coupled channels with its wave function, which further helps us to understand the isospin structure of the resonance.Comment: 5 pages, 1 figure. To appear in the Proceedings of XIII International Conference on Hadron Spectroscopy, November 29 - December 4, 2009, Florida State Universit

    Ultrafast relaxation rates and reversal time in disordered ferrimagnets

    Get PDF
    In response to ultrafast laser pulses, single-phase metals have been classified as “fast” (with magnetization quenching on the time scale of the order of 100 fs and recovery in the time scale of several picoseconds and below) and “slow” (with longer characteristic time scales). Disordered ferrimagnetic alloys consisting of a combination of “fast” transition (TM) and “slow” rare-earth (RE) metals have been shown to exhibit an ultrafast all-optical switching mediated by the heat mechanism. The behavior of the characteristic time scales of coupled alloys is more complicated and is influenced by many parameters such as the intersublattice exchange, doping (RE) concentration, and the temperature. Here, the longitudinal relaxation times of each sublattice are analyzed within the Landau-Lifshitz-Bloch framework. We show that for moderate intersublattice coupling strength both materials slow down as a function of slow (RE) material concentration. For larger coupling, the fast (TM) material may become faster, while the slow (RE) one is still slower. These conclusions may have important implications in the switching time of disordered ferrimagnets such as GdFeCo with partial clustering. Using atomistic modeling, we show that in the moderately coupled case, the reversal would start in the Gd-rich region, while the situation may be reversed if the coupling strength is larger

    Momentum-dependent contributions to the gravitational coupling of neutrinos in a medium

    Get PDF
    When neutrinos travel through a normal matter medium, the electron neutrinos couple differently to gravity compared to the other neutrinos, due to the presence of electrons in the medium and the absence of the other charged leptons. We calculate the momentum-dependent part of the matter-induced gravitational couplings of the neutrinos under such conditions, which arise at order g2/MW4g^2/M^4_W, and determine their contribution to the neutrino dispersion relation in the presence of a gravitational potential ϕext\phi^{\mathrm{ext}}. These new contributions vanish for the muon and tau neutrinos. For electron neutrinos with momentum KK, they are of the order of the usual Wolfenstein term times the factor (K2/MW2)ϕext(K^2/M^2_W)\phi^{\mathrm{ext}}, for high energy neutrinos. In environments where the gravitational potential is substantial, such as those in the vicinity of Active Galactic Nuclei, they could be the dominant term in the neutrino dispersion relation. They must also be taken into account in the analysis of possible violations of the Equivalence Principle in the neutrino sector, in experimental settings involving high energy neutrinos traveling through a matter background.Comment: Minor corrections in the references; one reference adde

    Gravitational coupling of neutrinos in a medium

    Get PDF
    In a medium that contains electrons but not the other charged leptons, such as normal matter, the gravitational interactions of neutrinos are not the same for all the neutrino flavors. We calculate the leading order matter-induced corrections to the neutrino gravitational interactions in such a medium and consider some of their physical implications.Comment: 21 pages, Latex, uses axodraw.sty (typos corrected; two references added. To appear in Phys. Rev. D

    Gravitational decay of the Z-boson

    Full text link
    We study the decay process of the Z boson to a photon and a graviton. The most general form of the on-shell amplitude, subject to the constraints due to the conservation of the electromagnetic and the energy-momentum tensor, is determined. The amplitude is expressed in terms of three form factors, two of which are CP-odd while one is CP-even. The latter, which is the only non-zero form factor at the one-loop level, is computed in the standard model and the decay rate is determined.Comment: 30 pages, Latex, uses Axodraw. (Some typographical errors corrected, and some references added in the new version.

    Enhanced stability of hydrogen atoms at the graphene/graphane interface of nanoribbons

    Full text link
    The thermal stability of graphene/graphane nanoribbons (GGNRs) is investigated using density functional theory. It is found that the energy barriers for the diffusion of hydrogen atoms on the zigzag and armchair interfaces of GGNRs are 2.86 and 3.17 eV, respectively, while the diffusion barrier of an isolated H atom on pristine graphene was only ~0.3 eV. These results unambiguously demonstrate that the thermal stability of GGNRs can be enhanced significantly by increasing the hydrogen diffusion barriers through graphene/graphane interface engineering. This may provide new insights for viable applications of GGNRs.Comment: 13 pages, 1 figure, 2 tables to appear in Appl. Phys. Let
    • 

    corecore