4,158 research outputs found

    Robust optimization with probabilistic constraints for power-efficient and secure SWIPT

    Get PDF
    In this paper, we propose beamforming schemes to simultaneously transmit data to multiple information receivers (IRs) while transfering power wirelessly to multiple energy harvesting receivers (ERs). Taking into account the imperfection of the instantaneous channel state information, we introduce a probabilistic-constrained optimization problem to minimize the total transmit power while guaranteeing data transmission reliability, secure data transmission, and power transfer reliability. As the proposed optimization problem is non-convex and has an infinite number of constraints, we propose two robust reformulations of the original problem adopting safe-convex-approximation techniques. The derived robust formulations are in semidefinite programming forms, hence, they can be effectively solved by standard convex optimization packages. Simulation results confirm the superiority of the proposed approaches to a baseline scheme in guaranteeing transmission security

    Robust chance-constrained optimization for power-efficient and secure SWIPT systems

    Get PDF
    In this paper, we propose beamforming schemes to simultaneously transmit data securely to multiple information receivers (IRs) while transferring power wirelessly to multiple energy-harvesting receivers (ERs). Taking into account the imperfection of the instantaneous channel state information (CSI), we introduce a chance-constrained optimization problem to minimize the total transmit power while guaranteeing data transmission reliability, data transmission security, and power transfer reliability. As the proposed optimization problem is non-convex due to the chance constraints, we propose two robust reformulations of the original problem based on safe-convex-approximation techniques. Subsequently, applying semidefinite programming relaxation (SDR), the derived robust reformulations can be effectively solved by standard convex optimization packages. We show that the adopted SDR is tight and thus the globally optimal solutions of the reformulated problems can be recovered. Simulation results confirm the superiority of the proposed methods in guaranteeing transmission security compared to a baseline scheme. Furthermore, the performance of proposed methods can closely follow that of a benchmark scheme where perfect CSI is available for resource allocation

    Double intelligent reflecting surface-assisted multi-user MIMO mmWave systems with hybrid precoding

    Get PDF
    This work investigates the effect of double intelligent reflecting surface (IRS) in improving the spectrum efficient of multi-user multiple-input multiple-output (MIMO) network operating in the millimeter wave (mmWave) band. Specifically, we aim to solve a weighted sum rate maximization problem by jointly optimizing the digital precoding at the transmitter and the analog phase shifters at the IRS, subject to the minimum achievable rate constraint. To facilitate the design of an efficient solution, we first reformulate the original problem into a tractable one by exploiting the majorization-minimization (MM) method. Then, a block coordinate descent (BCD) method is proposed to obtain a suboptimal solution, where the precoding matrices and the phase shifters are alternately optimized. Specifically, the digital precoding matrix design problem is solved by the quadratically constrained quadratic programming (QCQP), while the analog phase shift optimization is solved by the Riemannian manifold optimization (RMO). The convergence and computational complexity are analyzed. Finally, simulation results are provided to verify the performance of the proposed design, as well as the effectiveness of double-IRS in improving the spectral efficiency

    The Higgs Sector of the Minimal 3 3 1 Model Revisited

    Full text link
    The mass spectrum and the eigenstates of the Higgs sector of the minimal 3 3 1 model are revisited in detail. There are discrepancies between our results and previous results by another author.Comment: 20 pages, latex, two figures. One note and one reference are adde

    Serially concatenated unity-rate codes improve quantum codes without coding-rate reduction

    No full text
    Inspired by the astounding performance of the unity rate code (URC) aided classical coding and detection schemes, we conceive a quantum URC (QURC) for assisting the design of concatenated quantum codes. Unfortunately, a QURC cannot be simultaneously recursive as well as non-catastrophic. However, we demonstrate that, despite being non-recursive, our proposed QURC yields efficient concatenated codes, which exhibit a low error rate and a beneficial interleaver gain, provided that the coding scheme is carefully designed with the aid of EXtrinsic Information Transfer (EXIT) charts

    EXIT-chart aided quantum code design improves the normalised throughput of realistic quantum devices

    No full text
    In this contribution, the Hashing bound of Entanglement Assisted Quantum Channels (EAQC) is investigated in the context of quantum devices built from a range of popular materials, such as trapped ion and relying on solid state Nuclear Magnetic Resonance (NMR), which can be modelled as a so-called asymmetric channel. Then, Quantum Error Correction Codes (QECC) are designed based on Extrinsic Information Transfer (EXIT) charts for improving performance when employing these quantum devices. The results are also verified by simulations. Our QECC schemes are capable of operating close to the corresponding Hashing bound

    Quantum-aided multi-user transmission in non-orthogonal multiple access systems

    No full text
    With the research on implementing a universal quantum computer being under the technological spotlight, new possibilities appear for their employment in wireless communications systems for reducing their complexity and improving their performance. In this treatise, we consider the downlink of a rank-deficient, multi-user system and we propose the discrete-valued and continuous-valued Quantum-assisted Particle Swarm Optimization (QPSO) algorithms for performing Vector Perturbation (VP) precoding, as well as for lowering the required transmission power at the Base Station (BS), while minimizing the expected average Bit Error Ratio (BER) at the mobile terminals. We use the Minimum BER (MBER) criterion. We show that the novel quantum-assisted precoding methodology results in an enhanced BER performance, when compared to that of a classical methodology employing the PSO algorithm, while requiring the same computational complexity in the challenging rank-deficient scenarios, where the number of transmit antenna elements at the BS is lower than the number of users. Moreover, when there is limited Channel State Information (CSI) feedback from the users to the BS, due to the necessary quantization of the channel states, the proposed quantum-assisted precoder outperforms the classical precoder

    Fully-parallel quantum turbo decoder

    No full text
    Quantum Turbo Codes (QTCs) are known to operate close to the achievable Hashing bound. However, the sequential nature of the conventional quantum turbo decoding algorithm imposes a high decoding latency, which increases linearly with the frame length. This posses a potential threat to quantum systems having short coherence times. In this context, we conceive a Fully- Parallel Quantum Turbo Decoder (FPQTD), which eliminates the inherent time dependencies of the conventional decoder by executing all the associated processes concurrently. Due to its parallel nature, the proposed FPQTD reduces the decoding times by several orders of magnitude, while maintaining the same performance. We have also demonstrated the significance of employing an odd-even interleaver design in conjunction with the proposed FPQTD. More specifically, it is shown that an odd-even interleaver reduces the computational complexity by 50%, without compromising the achievable performance

    Indium selenide nanowire phase-change memory

    Get PDF
    Nonvolatile memory device using indium selenide nanowire as programmable resistive element was fabricated and its resistive switching property was studied as functions of electrical pulse width and voltage magnitude. The nanowire memory can be repeatedly switched between high-resistance (similar to 10(11) Omega) and low-resistance (similar to 6x10(5) Omega) states which are attributed to amorphous and crystalline states, respectively. Once set to a specific state, the nanowire resistance is stable as measured at voltages up to 2 V. This observation suggests that the nanowire can be programed into two distinct states with a large on-off resistance ratio of similar to 10(5) with significant potential for nonvolatile information storage
    corecore