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Nonvolatile memory device using indium selenide nanowire as programmable resistive element was
fabricated and its resistive switching property was studied as functions of electrical pulse width
and voltage magnitude. The nanowire memory can be repeatedly switched between high-resistance
��1011 �� and low-resistance ��6�105 �� states which are attributed to amorphous and
crystalline states, respectively. Once set to a specific state, the nanowire resistance is stable as
measured at voltages up to 2 V. This observation suggests that the nanowire can be programed into
two distinct states with a large on-off resistance ratio of �105 with significant potential for
nonvolatile information storage. © 2007 American Institute of Physics. �DOI: 10.1063/1.2793505�

The concept of using material phase change of certain
chalcogenides for information storage was introduced by
Ovshinsky1 in 1968. Resistive switching phase-change ran-
dom access memory �PRAM� features faster write/read, im-
proved endurance, and simpler fabrication, compared to con-
ventional transistor-based nonvolatile memories. Neverthe-
less, progress has been slow with the use of thin-film phase-
change materials �PCMs� such as Ge2Sb2Te5, due to high
programing current and intercell thermal interference that
prevent memory scaling down. More recently, the possibility
of growing PCMs in the form of nanowires2–7 promises the
potential of PRAMs to be realized in the future, thus renew-
ing interest in this area. The use of PCM nanowires instead
of thin films reduces the programmable cell volume which,
combined with a reduction in melting point of nanoscale
materials, is expected to reduce the programing current. In-
deed, demonstrations of reduction in melting point5,6 as well
as programming current3,4 have been reported recently for
both GeTe �GT� and Ge2Sb2Te5 �GST�. Among PCMs,
In2Se3 is more promising since it exhibits four orders of
magnitude higher resistivity than GT or GST and its resistiv-
ity can be varied by a factor of 105, depending on the degree
of crystallization.3,4 Highly resistive PCMs help to reduce
the programing current in PRAM switching. Here, we report
resistive switching results for In2Se3 nanowire-based PRAM.

Our approach to grow In2Se3 nanowires has been de-
scribed previously.7 The growth follows a vapor-liquid-solid
mechanism in a physical vapor deposition system. Figure 1
shows a typical transmission electron microscopy �TEM� im-
age of an In2Se3 nanowire. The nanowires have a diameter of
60–120 nm and are up to 100 �m in length. The selected
area electron diffraction �SAED� pattern shows regular spot

patterns, confirming the single crystalline nature of the nano-
wire. The memory devices were fabricated by transferring
the nanowires onto a SiO2-coated silicon substrate with a
prepatterned molybdenum �Mo� pad array prepared by opti-
cal lithography. Focused ion beam technique was used to
directly write 150-nm-thick Pt interconnect lines between the
nanowire and Mo probing pads. A Ga ion beam �30 kV and
30 pA� was used to decompose the organometallic Pt precur-
sor �trimethyl-methylcyclopentadienyl-platinum� to form
metallic Pt. The scanning electron microscope image of the
fabricated memory device is shown in Fig. 1�b�. The diam-
eter and length of the In2Se3 nanowire between the two Pt
lines are 50 nm and 7 �m, respectively. The current-voltage
�I-V� and resistance-voltage �R-V� characteristics were mea-
sured using a probe station with a HP4156A semiconductor
parameter analyzer. The voltage pulses for set and reset op-
erations were generated by an Agilent 33250A pulse genera-
tor.

To explore the resistive switching behavior, the In2Se3

nanowire device was subjected to a series of individual volt-
age pulses of constant width and varying magnitude, and the
device resistance was measured at 0.2 V after each pulse.
The devices were initially in a low-resistance state �LRS�;
for the representative device described in Fig. 2, the initial
resistance was �4.4�105 �. Starting with the device ini-
tially in the LRS �Fig. 2�a��, pulses with 20 ns fixed width
and very sharp fall-down edge �3 ns� were applied. The re-
sistance was stable for pulse voltages up to 4.5 V, then be-
gan increasing with increasing voltage until reaching a high-
resistance state �HRS� of �1011 � for a 7 V pulse. For the
case in which the device was initially in the HRS �Fig. 2�b��,
pulses with 100 �s fixed width were applied. In this case, the
nanowire resistance was stable for pulse voltages up to
4.5 V, then dropped to a LRS of �6�105 � for a pulse of
5 V. The two identified turning points represent the memory
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reset �from LRS to HRS� and set �from HRS to LRS� con-
ditions.

Once the nanowire is set to a specific resistive state, its
resistance is stable and the storage of data, represented by the
resistance value, is nonvolatile. Figure 3 shows the I-V and
R-V characteristics of the device in either high- or low-
resistance states with successive measurement sweeps. The
device exhibits stable resistive behavior over the voltage
range of 0–2 V. The dynamic switching ratio �on-to-off re-
sistance� is about 105, which is sufficiently large for nonvola-
tile memory applications.

Figure 4 illustrates the measured nanowire memory re-
sistance for successive programing cycles, in which the de-
vice is alternately set to LRS and reset back to HRS. For this
study, the device was set to LRS using a 100 �s /5 V pulse,
and reset to HRS using a 20 ns/7 V pulse. As shown, the
repeatable memory switching between the high- and low-
resistance states is clearly observed, although some variation
in the measured data is observed among testing cycles.

The presence of high- and low-resistance states, as well
as the qualitative nature of the electrical pulse-induced resis-
tive switching behavior, are similar to prior reports of phase-
change memories using thin-film In2Se3 material,8 and GT or
GST nanowires.3,4 The phase of the nanowire can be revers-
ibly switched between crystalline and amorphous through a
current induced joule heating process, resulting in the change
of electrical resistance. By applying a high and short pulse,
the nanowire can be rapidly heated up to its melting point
and then quickly quenched. Thus, the nanowire switches to

FIG. 1. �a� TEM image of an In2Se3 nanowire grown on SiO2 substrate
using 20 nm gold nanoparticles as catalyst. Top left inset shows the nano-
wire crystalline lattice structure and bottom right inset shows the SAED
pattern. �b� Top view of the fabricated In2Se3 nanowire memory device. Pt
interconnection lines were deposited by focused ion beam, linking the
In2Se3 nanowire with prepatterned Mo probing pads.

FIG. 2. Resistance of In2Se3 nanowire memory �measured at a small read
voltage of 0.2 V� as a function of applied voltage in a pulse-mode test. �a�
Switching from low-resistance state to high-resistance state with a fixed
pulse width of 20 ns. The reset starts to occur at 7 V. �b� Switching from
high-resistance state to low-resistance state with a fixed pulse width of
100 �s. The set starts to occur at 5 V.

FIG. 3. �a� Measured I-V characteristics and �b� R-V characteristics of
In2Se3 nanowire memory, both plots showing four successive testing sweeps
after nanowire was either set to low-resistance state or reset to high-
resistance state.
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an amorphous phase �high resistance�. By applying a low
and relatively long pulse, the nanowire is heated up to below
its melting point and recrystallizes spontaneously back to a
crystalline phase through annealing �low resistance�. It is ob-
served that the dynamic resistive switching ratio for In2Se3
nanowire ��105� is much larger than that reported for thin-
film In2Se3 devices ��103� as well as for other nanowire
devices �103 and 102 for GT and GST nanowires, respec-
tively�. Since In2Se3 is a single-phase binary compound, it is
relatively easy to convert between crystalline and amorphous
states, compared with other complex compounds such as
Ge2Sb2Te5. It should be also noted that an intermediate re-
sistive level ��2�107 �� was reached at a resetting voltage
of 5–6 V, as shown in Fig. 2�a�, which could possibly asso-
ciated with a secondary metastable phase other than the as-
synthesized �-In2Se3 phase.9

Compared with thin-film memory, In2Se3 nanowire has
much larger resistance in each corresponding material phase
�factors of 102 for LRS and 106 for HRS�, which results in
more effective delivery of the programing energy. Consider
the energy input during memory switching. For the reset op-
eration, the nanowire self-heating power, given by V2 /R, is
about 80 �W at 7 V. This corresponds to a total input energy
of 1.6 pJ for the 20 ns pulse duration. For the set operation,
the power is about 0.25 nW at 5 V, and the total input en-
ergy is 25 fJ for the 100 �s pulse duration. In the case of
thin-film In2Se3 memory,8 the corresponding self-heating
power/energy in the reset and set operations are 16 mW/
1.12 nJ and 14 �W/140 pJ, respectively. Obviously, the
nanowire memory uses orders of magnitude lower input
power and energy to switch between the two material phases.
The results here are more favorable than GT and GST
nanowires3,4 as well, which are at milliwatt levels.

Based on typical thermal conductivities of semiconduc-
tor materials and the physical dimensions of the nanowire, it
is estimated that the nanowire structures �crystalline phase�
have thermal resistances on the order of 107 °C/W. Assum-
ing that a static condition is reached within the pulse period,
this would yield an estimated maximum temperature due to
self-heating of approximately 800 °C for the reset operation
at 7 V, close to the bulk In2Se3 melting point �890 °C�. Note
that a reduction in melting point has been reported for In2Se3
�Ref. 7� and other PCM nanowires,5,6 which could further
reduce the input energy for reset operation. Also, the thermal
conductivity of the nanowire typically decreases due to low
dimensionality,10 which promotes self-heating effect by sup-
pressing thermal dissipation along the nanowire. These two
phenomena, showing strong size dependency, could lead to a
nonvolatile memory design with lower input energy by em-
ploying smaller-diameter phase-change nanowires. Indeed,
one order of magnitude reduction in reset current has been
shown possible by reducing the GT nanowire size from
200 to 28 nm.3

In summary, we have demonstrated nonvolatile phase-
change memory using In2Se3 nanowire as programmable el-
ement. A resistance switching ratio of 105 has been obtained
and the nanowire memory reversibly switches at much re-
duced input power/energy compared with the reported In2Se3
thin-film memory. The power needs are also lower than those
for GT and GST nanowire devices. The results indicate that
In2Se3 nanowire can be an excellent candidate for applica-
tions in nonvolatile data storage. Moreover, phase-change
nanowire memory potentially allows very-low-power infor-
mation storage through physical geometry scaling.
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FIG. 4. Measured In2Se3 nanowire device resistance for a series of high and
low resistance states after repeated reset-set programing cycles. Device was
switched from LRS to HRS using a 7 V/20 ns reset pulse �with 2 ns sharp
fall-down edge�, and from HRS to LRS using a 5 V/100 �s set pulse.

133119-3 Yu et al. Appl. Phys. Lett. 91, 133119 �2007�

Downloaded 08 Jan 2009 to 128.46.220.88. Redistribution subject to AIP license or copyright; see http://apl.aip.org/apl/copyright.jsp


	Purdue University
	Purdue e-Pubs
	September 2007

	Indium selenide nanowire phase-change memory
	Bin Yu
	Sanghyun Ju
	Xuhui Sun
	Garrick Ng
	Thuc D. Nguyen
	See next page for additional authors
	Authors



