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Abstract—In this paper, we propose beamforming schemes to
simultaneously transmit data to multiple information receivers
(IRs) while transfering power wirelessly to multiple energy-
harvesting receivers (ERs). Taking into account the imperfection
of the instantaneous channel state information, we introduce
a probabilistic-constrained optimization problem to minimize
the total transmit power while guaranteeing data transmission
reliability, secure data transmission, and power transfer reliabil-
ity. As the proposed optimization problem is non-convex and
has an infinite number of constraints, we propose two robust
reformulations of the original problem adopting safe-convex-
approximation techniques. The derived robust formulations are
in semidefinite programming forms, hence, they can be effectively
solved by standard convex optimization packages. Simulation
results confirm the superiority of the proposed approaches to
a baseline scheme in guaranteeing transmission security.

I. INTRODUCTION

Beamforming is a promising candidate to realize focused
far-field electromagnetic radiation [1] for simultaneous wire-
less information and power transfer (SWIPT) in practice.
Using advanced signal processing techniques for multiple
antennas, transmit powers and phases across the transmit an-
tennas can be designed such that information beams are steered
towards multiple information receivers (IRs) while energy
beams are directed at energy-harvesting receivers (ERs) [2]–
[6]. The beamforming design problem is usually formulated as
an optimization problem taking into account the system’s qual-
ity of service (QoS) requirements1. In particular, channel state
information (CSI) between the transmitter and the receivers
is exploited to optimally control the phase and power of the
beamformer. In practice, the system requirements are normally
provided/decided by the system operator/designer while the
CSI is obtained by some channel estimation technique. Due
to the nature of wireless channels, errors in CSI estimation are
unavoidable [5], [7]. However, using the estimated CSI directly
as input for the beamforming design may result in a resource
allocation mismatch. More importantly, such designs cannot
guarantee any QoSs for users of the system. Therefore, robust
beamforming designs taking into account the imperfection of
the CSI are desirable for practical SWIPT systems.

1The system QoS requirements may include for example the minimum
signal-to-interference-plus-noise ratios (SINRs) of the IRs, the minimum
received power at the ERs, and the maximum tolerable leakage SINRs of
the IRs to the ERs.

Robust beamforming designs for SWIPT have been mostly
based on a worst-case approach [5], [7], [8]. Specifically, the
imperfection of the CSI link between the transmitter and the
receiver is captured by an error vector with random elements.
Due to the randomness and continuity of the error vector,
an infinite number of constraints are needed to guarantee the
QoS which makes the problem intractable. To overcome this
obstacle, the norms of the error vectors are assumed to be
bounded by known values. Then, using the S-procedure [9],
the QoS constraints of the SWIPT system are replaced by
a finite number of constraints representing upper bounds on
the CSI errors [5], [7], [8], [10]. This conservative design
approach requires an exceeding amount of system resources to
protect rarely occurring worst cases. Hence, less conservative
approaches have recently been proposed by accepting the
violation of the QoS constraints with certain probabilities [11],
[12].

This paper focuses on power-efficient transmission strate-
gies for SWIPT by minimizing the total transmit power.
Taking into account the imperfection of the CSI, we first
formulate an outage-based probabilistic optimization problem
that minimizes the total transmit power subject to the fol-
lowing three sets of QoS constraints: i) the probability that
the received SINR at each IR is above a required level is
higher than a predefined target; ii) the probability that the
IRs’ leakage SINRs at ERs exceed a secure level is below
a threshold; iii) the probability that the power received by
an ER is above a required level is greater than a prescribed
value. The aforementioned three types of constraints guar-
antee data transmission reliability, secure data transmission,
and power transfer reliability, respectively. Since the error
in the estimated CSI is modelled as a complex continuous
random variable, the number of constraints in the proposed
optimization problem is infinite. Furthermore, the probabilistic
constraints are non-convex. To tackle these challenges, we
adopt two mathematical tools, i.e., the S-procedure [9] and
the Bernstein-type inequality [13], to formulate two safe
approximations [14] of the proposed optimization problem.
The derived safe approximations lead to tractable semidefinite
programmes (SDPs) which are convex and serve as perfor-
mance upper bounds for the original minimization problem.

This paper differs from the related works in [11], [12] in the
following aspects. Communication security was not considered



in [11]. While this paper studies a secure SWIPT wireless
system, [12] considered a secure SWIPT cognitive system.
Furthermore, the problem formulation proposed in this paper
can guarantee that the IRs’ leakage SINRs at the ERs remain
below a secure level, e.g. below the decoding sensitivity
should the ERs try to eavesdrop. In contrast, the approach
in [12] cannot accomplish this. In fact, while the secrecy
rate of the IR is kept above certain required level in [12],
the ERs may still be able to eavesdrop IR’s message if their
decoding sensitivity levels are lower than the IR leakage SINR.
Hence, the approach in [12] is less secure than the proposed
approaches. Also, the optimization problem considered in this
paper is more challenging than its counterparts in [11], [12]
as secure information transmission for multiple IRs is ensured
whereas the problem in [11] does not consider secrecy at all
and the problem in [12] protects only a single IR.

Notation: The following notations are used in this paper.
y or Y : a scalar; y: a column vector; Y: a matrix; ∥·∥: the
standard Euclidean norm; ∥·∥F : the Frobenius norm; (·)H :
the complex conjugate transpose operator; Tr (·): the trace
operator; Pr (·): the probability of an event; Y ≽ 0: Y is
positive semidefinite; IM : the M ×M identity matrix; Re{·}:
the real part of a complex number; Eigmax (Y): the maximum
eigenvalue of Y; s+(Y) : max{Eigmax(Y), 0}; vec (Y):
stacking all the entries of Y into a column vector; R: the
set of all real scalars ; CM×1: the set of all M × 1 vectors
with complex elements; HM×M : the set of all M ×M Her-
mitian matrices; y ∼ CN (0,σ2): y is a zero-mean circularly
symmetric complex Gaussian random variable with variance
σ2; y ∼ CN (0,Y): y is a zero-mean circularly symmetric
complex Gaussian random vector with covariance matrix Y;
and finally Y1/2: the square root of matrix Y.

II. SYSTEM MODEL

In this paper, we consider a scenario where a transmitter
equipped with M antennas simultaneously transmits informa-
tion and power to U IRs and N ERs, respectively, via radio
frequency signals. All IRs and ERs are equipped with a single-
antenna. Let hi ∈ CM×1 and gt ∈ CM×1 represent the actual
channel coefficients of the ith IR and the tth ER, respectively.
Let wi ∈ CM×1 and s(I)i ∼ CN (0, 1), respectively, denote the
beamforming vector of and the data to be transmitted to the
ith IR. Let vt ∈ CM×1 and s(E)

t ∼ CN (0, 1), respectively, be
the artificial-noise beamforming vector and the artificial noise
for the tth ER. The overall signals received by the ith IR and
the tth ER are, respectively, given by

y(I)i =
U∑

j=1

hH
i wjs

(I)
j +

N∑

t=1

hH
i vts

(E)
t + n(I)

i and (1)

y(E)
t =

U∑

j=1

gH
t wjs

(I)
j +

N∑

p=1

gH
t vps

(E)
p + n(E)

t . (2)

Here, n(I)
i and n(E)

t are the zero-mean circularly symmetric
complex additive white Gaussian noises with variance σ2, i.e.,

n(I)
i , n(E)

t ∼ CN (0,σ2), observed at the ith IR and the tth ER,
respectively.

We assume that the CSI estimation is imperfect. This is
modelled as hi = h̃i + ∆hi and gt = g̃t + ∆gt, where
h̃i ∈ CM×1 and ∆hi ∈ CM×1 are the estimated value of
hi and the corresponding error, respectively; g̃t ∈ CM×1 and
∆gt ∈ CM×1 are the estimated value of gt and the corre-
sponding error, respectively. We further assume that ∆hi ∼
CN (0,Hi) and ∆gt ∼ CN (0,Gt), where Hi ≽ 0 and
Gt ≽ 0 are the error covariance matrices which are assumed
to be known for beamformer design. Let ∆hi = H1/2

i ei and
∆gt = G1/2

t rt, where ei ∼ CN (0, IM ), rt ∼ CN (0, IM ).
Let {wi} = {w1, · · · ,wU} be the set of candidate data
beamforming vectors for all IRs and let {vt} = {v1, · · · ,vN}
be the set of candidate artificial-noise beamforming vectors.
The SINR at the ith IR, denoted by Γi ({wi}, {vt}), and the
leakage SINR of the ith IR observed at the tth ER, denoted
by Γ(t)

i ({wi}, {vt}), are given in (3) and (4) at the top of
next page, respectively. The total power received by the tth
ER, denoted by Φt ({wi}, {vt}), is given as

Φt ({wi}, {vt})=
U∑

i=1

wH
i

(
g̃t+G1/2

t rt
)(

g̃t +G1/2
t rt

)H
wi

+
N∑

p=1

vH
p

(
g̃t +G1/2

t rt
)(

g̃t +G1/2
t rt

)H
vp.

(5)

Hereafter, if otherwise stated, {i, j} ∈ {1, · · · , U}, and
{t, p} ∈ {1, · · · , N}.

III. PROPOSED ROBUST PROBABILISTIC-CONSTRAINED
OPTIMIZATION PROBLEM

For secure information transmission, ERs are considered
as potential eavesdroppers as they may be able to decode
overheard messages intended for IRs. In order to reduce the
information leakage, the quantities of the signals intended for
the IRs but received at the ERs should be minimized. On the
other hand, due to the low energy conversion efficiency at
the ERs, a high received power level is required at each ER to
compensate for the power-conversion loss. Therefore, artificial
noise is utilized to satisfy these contradictory goals [5], [8].

The communication between the transmitter and the IRs and
the power transfer to the ERs are considered as in outage if
either one of the following cases occurs. (1) The SINR level
at the ith IR falls bellow the required level γi, ∀i, which is
referred to as SINR outage. (2) The leakage-SINR of the ith
IR at the tth ER is above the secure level γ(t)i , ∀i, ∀t, which is
referred to as leakage-SINR outage. (3) The received power at
the tth ER is below the required level Pt, ∀t, which is referred
to as power-transfer outage.

Aiming to design a power-efficient beamforming scheme,
we find sets of data beamforming vectors {wi} and artificial-
noise beamforming vectors {vt} that minimize the total trans-
mit power subject to the probabilities of the SINR outage,
leakage-SINR outage, and power-transfer outage being kept



Γi ({wi}, {vt}) =
wH

i

(
h̃i +H1/2

i ei

)(
h̃i +H1/2

i ei

)H
wi

∑U
j=1,j ̸=i w

H
j

(
h̃i +H1/2

i ei

)(
h̃i +H1/2

i ei

)H
wj +

∑N
t=1 v

H
t

(
h̃i +H1/2

i ei

)(
h̃i +H1/2

i ei

)H
vt + σ2

(3)

Γ(t)
i ({wi}, {vt}) =

wH
i

(
g̃t +G1/2

t rt
)(

g̃t +G1/2
t rt

)H
wi

∑U
j=1,j ̸=i w

H
j

(
g̃t +G1/2

t rt
)(

g̃t +G1/2
t rt

)H
wj +

∑N
p=1 v

H
p

(
g̃t +G1/2

t rt
)(

g̃t +G1/2
t rt

)H
vp + σ2

(4)

below predefined maximum tolerable levels. Hence, we intro-
duce the following optimization problem:

min
{wi},{vt}

U∑

i=1

wH
i wi +

N∑

p=1

vH
p vp

s. t. Pr (Γi ({wi}, {vt}) ≥ γi) ≥ 1− ρi, ∀i,

Pr
(
Γ(t)
i ({wi}, {vt}) ≤ γ(t)i

)
≥ 1− ρ(t)i , ∀i, ∀t,

Pr (Φt ({wi}, {vt}) ≥ Pt) ≥ 1− ϱt, ∀t,
(6)

where ρi ∈ (0, 1], ρ(t)i ∈ (0, 1], and ϱt ∈ (0, 1] are the
maximum tolerable SINR outage, leakage-SINR outage, and
power-transfer outage, respectively. The events in the first and
second sets of probabilistic constraints in (6) are non-convex
with respect to {wi} and {vt}. In the sequel, we transform
them into convex forms by introducing new variables. We also
cast the events into quadratic forms of error vectors.

To this end, we define data beamforming matrix Wi =
wiwH

i and artificial-noise beamforming matrix Vt = vtvH
t

where Wi ≽ 0, Vt ≽ 0, Wi and Vt are rank-one
matrices2. Then, using xHyyHx = yHxxHy, we rewrite
Γi ({wi}, {vt}) ≥ γi as:

(
h̃i +H1/2

i ei
)H

Ai

(
h̃i +H1/2

i ei
)
≥ σ2, (7)

where Ai =
(
1 + 1

γi

)
Wi − C and C =

∑U
j=1 Wj +

∑N
t=1 Vt. Further manipulations with a note of covariance

matrix property, i.e., HH
i = Hi, ∀i, lead to the following

equivalent form of (7):

fi(ei) ! eHi H1/2
i AiH

1/2
i ei + 2Re{eHi H1/2

i Aih̃i}
+h̃H

i Aih̃i − σ2 ≥ 0. (8)

Similarly, Γ(t)
i ({wi}, {vt}) ≤ γ(t)i can be recast as

k(t)i (rt) ! rHt G1/2
t BiG

1/2
t rt + 2Re{rHt G1/2

t Big̃t}
+g̃H

t Big̃t + σ2 ≥ 0, (9)

where Bi = C −
(
1 + 1

γ(t)
i

)
Wi. Furthermore,

Φt ({wi}, {vt}) ≥ Pt is equivalent to:

dt(rt) ! rHt G1/2
t CG1/2

t rt + 2Re{rHt G1/2
t Cg̃t}

+g̃H
t Cg̃t − Pt ≥ 0. (10)

2A matrix is rank-one if it has only one linearly independent column/row.

Using (8), (9), and (10) along with relaxing the rank-one
constraints on Wi and Vt, (6) is converted to the following
optimization problem:

min
{Wi},{Vt}

Tr

(
U∑

i=1

Wi +
N∑

p=1

Vp

)

s. t. Pr (fi(ei) ≥ 0) ≥ 1− ρi, ∀i,

Pr
(
k(t)i (rt) ≥ 0

)
≥ 1− ρ(t)i , ∀i, ∀t,

Pr (dt(rt) ≥ 0) ≥ 1− ϱt, ∀t,
Wi ≽ 0, ∀i, Vt ≽ 0, ∀t,

(11)

where {Wi} = {W1, · · · ,WU} and {Vt} =
{V1, · · · ,VN} are two sets of beamforming matrices.
Since ei and rt are continuous random vectors, the number
of constraints in optimization problem (11) is infinite.
Furthermore, solving problem (11) is challenging due to the
fact that the probabilistic constraints neither have simple
closed-forms nor are they convex.

We tackle the intractable probabilistic constraints in (11)
by replacing them by computationally tractable, i.e., convex,
approximations [14]. These approximations result in optimiza-
tion problem that are convex with respect to the original
variables, i.e., {Wi} and {Vt}, and possibly some additional
variables. The process is regarded as a safe approximation if
every feasible solution to the approximated problem is also
feasible for the original problem (11). In other words, the op-
timal solution to the safe approximation problem is a feasible
suboptimal solution to the original problem. Therefore, the
problem based on the safe approximation serves as an upper
bound for the original problem [15]. In the following sections,
we introduce two approaches to derive robust problems using
two different safe approximations of (11).

IV. S-PROCEDURE BASED APPROACH

Let us assume that ei and rt are confined to the complex
spherical sets ξi ! {ei ∈ CM×1 | ∥ei∥2 ≤ R2

i } and ψt !
{rt ∈ CM×1 | ∥rt∥2 ≤ Q2

t} with M dimensions and radii Ri

and Qt, respectively. Since the error vector ei ∼ CN (0, IM )
is confined to the spherical set ξi, the probabilistic constraint

Pr (fi(ei) ≥ 0) ≥ 1− ρi (12)

holds if [15]

fi(ei) ≥ 0 and Pr (ei ∈ ξi) ≥ 1− ρi. (13)



The second condition in (13) is always true if the radius of
the spherical set ξi is selected such that

Ri =

√
Tm (1− ρi)

2
, (14)

where Tm (·) is the inverse cumulative distribution function
of the Chi-square random variable with m = 2M degrees of
freedom. Therefore, using ∥ei∥2 = eHi IMei, one can conclude
that (12) can be safely approximated by the following two
constraints

fi(ei) ≥ 0 and eHi IMei −
Tm (1− ρi)

2
≤ 0. (15)

Applying similar steps for Pr
(
k(t)i (rt) ≥ 0

)
≥ ρ(t)i and

Pr (dt(rt) ≥ 0) ≥ ϱt, we introduce the safe approximation to
problem (11) as

min
{Wi},{Vt}

Tr

(
U∑

i=1

Wi +
N∑

p=1

Vp

)

s. t. fi(ei) ≥ 0, ∀i,

eHi IMei −
Tm (1− ρi)

2
≤ 0, ∀i,

k(t)i (rt) ≥ 0, ∀i, ∀t,
rHt IMrt − Ω ≤ 0, ∀t,
dt(rt) ≥ 0, ∀t,
rHt IMrt − Ω ≤ 0, ∀t,
Wi ≽ 0, ∀i, Vt ≽ 0, ∀t,

(16)

where Ω = min

(
Tm

(
1−ρ(t)

i

)

2 , Tm(1−ϱt)
2

)
.

Remark 1: The values of the radii Ri and Qt of the spherical
sets ξi and ψt are not required in (16) as they have been
implicit incorporated into the outages, e.g. Ri =

√
Tm(1−ρi)

2 .
The number of constraints in (16) is still infinite3 due to

the randomness of the error vectors ei and rt. To proceed, we
first introduce the following lemma.

Lemma 1 (S-Procedure [9]): Let

mn(x) = xHYnx+ 2Re{xHyn}+ cn, n ∈ {1, 2}, (17)

where Yn ∈ HM×M , yn ∈ CM×1, and cn ∈ R. If there exists
an x̌ such that mn(x̌) < 0, then ∀x ∈ CM×1, the following
statements are equivalent:

1) m1(x) ≥ 0 and m2(x) ≤ 0 are satisfied ∀x ∈ CM×1.
2) There exists a β ≥ 0 such that

[
Y1 + βY2 b1 + βb2

bH
1 + βbH

2 c1 + βc2

]
≽ 0. (18)

Adopting Lemma 1, one can transform optimization problem
(16) into the standard convex SDP form in (19) given at the
top of next page where αi,λti, and βt are auxiliary variables.

3Problem (16) is an semi-infinite optimization problem, i.e., an optimiza-
tion problem with a finite number of variables and an infinite number of
constraints.

To arrive at (19), we have relaxed the rank-one conditions on
the beamforming matrices Wi and Vt. From our simulation
results, we have observed that if problem (19) is feasible then
it yields rank-one optimal solutions4. As a result, beamforming
vectors w⋆

i and v⋆
t are obtained as the products of the eigen-

vectors and their corresponding eigenvalues of the optimal
rank-one matrices W⋆

i and V⋆
t , respectively. Since (19) is a

safe approximation of (6), w⋆
i and v⋆

t are suboptimal solutions
to the original problem (6).

V. BERNSTEIN-TYPE-INEQUALITY BASED APPROACH

In this section, the bounded-norm conditions on the error
vectors are relaxed. We adopt a different approach to find
a robust formulation, i.e., safe convex approximation to the
original problem (11). To begin, let us recall the following
lemma.

Lemma 2 (Bernstein-type inequality [13]): Consider the
following random expression f(x) = xHYx + 2Re{xHu},
where x ∼ CN (0, IM ), Y ∈ HM×M , and u ∈ CM×1. For
all δ > 0, the following statement always holds:

Pr
(
f(x) ≥ Tr (Y)−

√
2δ
√
∥Y∥2F + 2∥u∥2 − δs+(Y)

)

≥ 1− e−δ. (20)

With δi = − ln ρi and Lemma 2, the constraint
Pr (fi(ei) ≥ 0) ≥ 1 − ρi in (11) can be rewritten as (21) at
the top of the next page. Then, by introducing two auxiliary
variables θi and ϑi, (21) is further cast as:

Tr
(
H1/2

i AiH
1/2
i

)
−
√

2δiθi − δiϑi ≥ σ2 − h̃H
i Aih̃i, (22)

√
∥H1/2

i AiH
1/2
i ∥2F + 2∥H1/2

i Aih̃i∥2 ≤ θi, (23)

ϑiIM +H1/2
i AiH

1/2
i ≽ 0, (24)
ϑi ≥ 0. (25)

Note that (23) can be equivalently written as a second-order-
cone (SOC) constraint

∥∥∥∥∥

[
vec
(
H1/2

i AiH
1/2
i

)

√
2H1/2

i Aih̃i

]∥∥∥∥∥ ≤ xi. (26)

Similarly, setting δ(t)i = − ln ρ(t)i , and using two auxiliary
variables θ(t)i and ϑ(t)i , the constraint Pr

(
k(t)i (rt) ≥ 0

)
≥ 1−

ρ(t)i in (11) is equivalent to the following constraints:

Tr
(
G1/2

t BiG
1/2
t

)
−
√
2δ(t)i θ(t)i − δ(t)i ϑ(t)i ≥ −σ2− g̃H

t Big̃t,

(27)
∥∥∥∥∥

[
vec
(
G1/2

t BiG
1/2
t

)

√
2G1/2

t Big̃t

]∥∥∥∥∥ ≤ θ(t)i , (28)

ϑ(t)i IM +G1/2
t BiG

1/2
t ≽ 0, (29)

ϑ(t)i ≥ 0. (30)

4A proof for the rank-one optimal solution to problem (19) is excluded
here due to the constrained space. The proof will be provided in a full report
of this work.



min
{Wi},{Vt},αi,λt

i,βt

Tr

(
U∑

i=1

Wi +
N∑

p=1

Vp

)

s. t.

[
H1/2

i AiH
1/2
i + αiIM H1/2

i Aih̃i

h̃H
i AiH

1/2
i h̃H

i Aihi − σ2 − αi
Tm(1−ρi)

2

]
≽ 0, αi ≥ 0, ∀i,

[
G1/2

t BiG
1/2
t + λ(t)i IM G1/2

t Big̃t

g̃H
t BiG

1/2
t g̃H

t Big̃t + σ2 − λ(t)i Ω

]
≽ 0, λ(t)i ≥ 0, ∀i, ∀t,

[
G1/2

t CG1/2
t + βtIM G1/2

t Cg̃t

g̃H
t CG1/2

t g̃H
t Cgt − Pt − βtΩ

]
≽ 0, βt ≥ 0, ∀t,

Wi ≽ 0, ∀i, Vt ≽ 0, ∀t.

(19)

Tr
(
H1/2

i AiH
1/2
i

)
−
√
2δi

√
∥H1/2

i AiH
1/2
i ∥2F + 2∥H1/2

i Aih̃i∥2 − δis
+
(
H1/2

i AiH
1/2
i

)
≥ σ2 − h̃H

i Aih̃i. (21)

Using the same approach, the constraint Pr (dt(rt) ≥ 0) ≥
1− ϱt in (11) is recast as:

Tr
(
G1/2

t CG1/2
t

)
−
√
2µtat − µtbt ≥ Pt − g̃H

t Cg̃t, (31)
∥∥∥∥∥

[
vec
(
G1/2

t CG1/2
t

)

√
2G1/2

t Cg̃t

]∥∥∥∥∥ ≤ at, (32)

btIM +G1/2
t CG1/2

t ≽ 0, (33)
bt ≥ 0, (34)

where µt = − ln ϱt; at and bt are auxiliary variables. There-
fore, the safe approximation to problem (11) can be written
as

min
{Wi},{Vt},θi,ϑi,θ

(t)
i ,ϑ(t)

i ,at,bt

Tr

(
U∑

i=1

Wi +
N∑

p=1

Vp

)

s. t. (22), (26), (24), (25) ∀i,
(27), (28), (29), (30), ∀i, ∀t,
(31), (32), (33), (34), ∀t,
Wi ≽ 0, ∀i, Vt ≽ 0, ∀t.

(35)
The SOC constraints in (26), (28), and (32) are simple cases of
an SDP since any SOC constraint can be recast in SDP form
using the Schur complement [9]. Hence, optimization problem
(35) is convex.

We note that we have also relaxed the rank-one conditions
on the beamforming matrices Wi and Vt to derive the safe
approximation (35) of the original problem (6). However,
from our simulations, the optimal solutions to (35) are always
rank-one if the problem is feasible5. Hence, we can obtain
beamforming vectors w⋆

i and v⋆
t using the same approach as

in Section IV as suboptimal solutions to the original problem.

5Again, a proof for the rank-one optimal solution to problem (35) is
excluded here due to the constrained space. The proof will be provided in
a full report of this work.

VI. SIMULATION RESULTS

We evaluate the performance of the two proposed
approaches and compare them against the probabilistic-
constraint-based scheme introduced in [11] which is consid-
ered as the baseline scheme. For the baseline scheme, there
is no guarantee for information security, i.e., no leakage-
SINR-outage constraint. Hereafter, we refer to the S-Procedure
based approach and the Bernstein-type-inequality based ap-
proach as Approach-I and Approach-II, respectively. Since
the optimization problems in (19), i.e., Approach-I, and (35),
i.e., Approach-II, are convex [9], numerical convex program
solvers such as the SeDuMi provided by the CVX optimization
package [16] can be adopted to obtain the sets of optimal
beamforming matrices W⋆

i and V⋆
t .

A. Simulation Setup

Consider a transmitter supporting two IRs and two ERs,
i.e., U = N = 2. The estimated channel vectors h̃i and g̃t are
respectively modelled as:

h̃i = Hi(l
(I)
i )hi,w, and g̃t = Gt(l

(E)
t )gt,w,

where hi,w ∼ CN (0, IM ); gt,w ∼ CN (0, IM );

Hi(l
(I)
i ) =

C

4πfc

(
1

l(I)i

)κ
2

; Gt(l
(E)
t ) =

C

4πfc

(
1

l(E)
t

)κ
2

;

l(I)i = 100 m, ∀i, and l(E)
t = 9 m, ∀t, are distances from the

transmitter to an IR and an ER, respectively; C = 3 × 108

ms−1 is the speed of light; fc = 900 MHz is the carrier
frequency; and κ = 2.7 is the pathloss exponent. The noise
power at each IR and ER is assumed to be −70 dBm. The
error covariance matrices are given as Hi = ε

(
Hi(l

(I)
i )
)2

IM

and Gt = ε
(
Gt(l

(E)
t )

)2
IM where ε = 0.001. Monte-

Carlo simulations have been carried out over 500 channel
realizations.
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Fig. 1: Average total transmit power versus required IRs’ SINR with
different numbers of antennas. The secure level is set to γ(t)

i = −5 dB
∀i, ∀t. The SINR outage, leakage-SINR outage, and power-transfer
outage are set equal to 10 %, i.e., ρi = ρ(t)i = ϱt = 0.1, ∀i, ∀t. The
required power level at the ERs are Pt = −10 dBm, ∀t.

B. Performance Evaluation

Fig. 1 shows the average total transmit power versus the
required SINR at each IR for different numbers of antennas
for the proposed approaches and the baseline scheme in [11].
This figure indicates that the performances of the two proposed
approaches are almost identical for IR SINRs from 0 dB to 12
dB. Approach-I consumes more power than Approach-II for
relatively high target SINRs. The performance gap gradually
increases from 0.05 dB to around 0.4 dB as the IR’s SINR
increases from 12 dB to 20 dB for both 6 and 8 antennas.
This is due to the fact that a bounded-norm model has been
imposed on the uncertainty set of the CSI for the derivation
of Approach-I but not for Approach-II. This leads to a tighter
approximation to the original problem for the latter compared
to the former. The same performance trend of the two types of
approximation have also been reported in [15] for conventional
information transmission in MISO downlink scenarios.

Fig. 1 shows that the baseline scheme consumes the lowest
power, e.g. around 0.8 dB and 0.5 dB less than the pro-
posed approach with 6 and 8 antennas, respectively, at IR
target SINRs of 10 dB. The price paid for this low power
consumption is that there is no control on the leakage SINR
of the IR signals observed at the ERs. This will be shown
and discussed more in detail in Fig. 2. At relatively low IR
target SINRs, i.e., less than 6 dB, the performances of the
proposed approaches are close to that of the baseline. However,
as the IR target SINRs increase, the performance gap between
the proposed approaches and the baseline widens, i.e., up to
1.25 dB at a IR target SINR of 20 dB. The reason for this
is that the leakage SINR of the IRs increases with the IR’s
SINR requirement. Therefore, a higher power consumption
is required by the proposed approaches for pumping more
artificial noise into the communication channels to confuse
the ERs, hence, guaranteeing the required level of security for
all IRs.

Fig. 2 shows the histogram of the average leakage SINR
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Fig. 2: The histograms of the average leakage SINRs of the IR signals
observed at the ERs when the required IR SINR target is γi = 18
dB, ∀i. The number of antennas is M = 6. The secure level is
γ(t)
i = −5 dB, ∀i, ∀t. The SINR outage, leakage-SINR outage, and

power-transfer outage are set equal to 10 %, i.e., ρi = ρ(t)i = ϱt =
0.1, ∀i, ∀t. The required power level at the ERs are Pt = −10 dBm,
∀t.

of the IRs measured at the ERs. To obtain the result in
this figure, for each feasible channel realization6, we first
obtained beamforming vectors for all approaches. We then
generated 1000 random error vectors associated with that
channel realization to test the performance of each approach.
The resulting leakage SINRs were averaged over the number
of ERs and the number of feasible CSIs. In this experiment,
the required secure level γ(t)i is set to be −5 dB for all i and
t. The results indicate that the information delivered to the
IRs by the baseline approach are at a very high risk of being
decoded by the ERs as the leakage SINR is about 11 dB higher
than the required secure level for all occurrences. On the other
hand, the proposed approaches successfully guarantee secure
information transmission to the IRs as they push the leakage
SINR well below the required secure level for all cases. The
conservatism of Approach-I can be observed here as it pushes
the leakage SINR around 0.7 dB below the requirement, i.e.,
0.2 dB lower than Approach-II.

Fig. 3 shows the average total transmit power versus re-
quired power level Pt at the ERs for different numbers of
antennas, i.e., M = 6 and M = 8, and different required IR
SINR targets, i.e., γi = 10 dB in Fig. 3 (a) and γi = 18 dB
in Fig. 3 (b), ∀i. The average transmit power appears to be
a monotonically increasing function of the required power at
the ERs. For a required receive power range of −10 dBm to
0 dBm, the performances of the two approaches are similar.
The performance gap widens to around 0.8 dB as the ER’s
demand increases to 10 dBm. This again confirms the tightness
approximation of Approach-I over Approach-II for relatively
high ER power demands.

Fig. 4 illustrates the average total transmit power versus the
outage level for different numbers of antennas, i.e., M = 6 in

6For feasible channel condition, all considered schemes return feasible
solutions.
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Fig. 3: Average total transmit power versus required power at each
ER for different required IR SINR targets: (a) γi = 10 dB, ∀i; (b)
γi = 18 dB, ∀i. The secure level γ(t)

i = −5 dB ∀i, ∀t. The SINR
outage, leakage-SINR outage, and power-transfer outage are set equal
to 10 %, i.e., ρi = ρ(t)i = ϱt = 0.1, ∀i, ∀t.
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Fig. 4: Average total transmit power versus outage level for different
numbers of transmit antennas: (a) M = 6; (b) M = 8. Here, we
set equal outage levels for all types of constraints, i.e., ρi = ρ(t)i =
ϱt, ∀i, t. The required IR SINR target is γi = 18 dB, ∀i. The secure
level is γ(t)

i = −5 dB, ∀i, ∀t. The required power level at the ERs
are Pt = −10 dBm, ∀t.

Fig. 4 (a) and M = 8 in Fig. 4 (b). It can be seen from the
figure that a small drop in the transmit power level significantly
degrades the QoS. For instance, with M = 6, a drop of 0.57
dB in the transmit power of Approach-I and a drop of 0.47 dB
in that of Approach-II causes a large increase in the outage
from 1 % to 30 %. We have noted from our simulations that the
stricter the requirements in terms of the outage are, the more
likely it is that the problem becomes infeasible. This is because
of the fact that the feasibility regions of our optimization
problems are smaller for lower required outage probabilities.

Finally, from Figs. 1, 3, and 4, one can conclude that
increasing the number of antennas reduces the power con-
sumption of the considered approaches. This is a result of
the improved beamformer resolution due to the extra spatial
degrees of freedom introduced by additional antennas.

VII. CONCLUSIONS

We have proposed a probabilistic-constrained optimization
problem for a SWIPT system to tackle the imperfection of the
instantaneous CSI. To handle the non-convex QoS constraints,
we have derived two robust formulations for the proposed
problem adopting safe approximation techniques. The derived
robust formulations are convex and the obtained optimal
solutions can be considered as upper bounds for the original
power minimization problem. Simulation results confirmed the
superiority of the proposed approaches to a baseline scheme
in guaranteeing secure data transmissions.
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