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Abstract—In this paper, we propose beamforming schemes to
simultaneously transmit data securely to multiple information
receivers (IRs) while transferring power wirelessly to multi-
ple energy-harvesting receivers (ERs). Taking into account the
imperfection of the instantaneous channel state information
(CSI), we introduce a chance-constrained optimization problem
to minimize the total transmit power while guaranteeing data
transmission reliability, data transmission security, and power
transfer reliability. As the proposed optimization problem is non-
convex due to the chance constraints, we propose two robust
reformulations of the original problem based on safe-convex-
approximation techniques. Subsequently, applying semidefinite
programming relaxation (SDR), the derived robust reformula-
tions can be effectively solved by standard convex optimization
packages. We show that the adopted SDR is tight and thus
the globally optimal solutions of the reformulated problems
can be recovered. Simulation results confirm the superiority
of the proposed methods in guaranteeing transmission security
compared to a baseline scheme. Furthermore, the performance of
proposed methods can closely follow that of a benchmark scheme
where perfect CSI is available for resource allocation.

I. Introduction
In a simultaneous wireless information and power transfer

(SWIPT) system, in order to harvest meaningful amounts of
energy, the energy-harvesting receivers (ERs) must be located
closer to the transmitter than the conventional information
receivers (IRs) [1]–[7]. Being closer to the transmitter, the
ERs will receive stronger radio frequency (RF) signals than
the IRs. Since information conveyed via RF signals is always
at risks of being overheard by eavesdroppers due to the
broadcast nature of wireless channels, the information intended
for the IRs has to be protected in order to prevent potential
eavesdropping by the ERs. Due to its high computational
complexity, conventional upper-layer cryptography may cause
a high energy consumption at the receivers. Therefore, such
techniques may not be suitable for protecting information in
SWIPT systems [2], [8] as SWIPT devices are usually energy
limited. Instead, physical layer security [9]–[11], where fading,
noise, and interference are exploited, is considered to be an
effective method for providing secure information transmission
in SWIPT systems [2], [12].

Both information transmission and power transfer are
equally important in SWIPT systems. Due to current hard-
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ware limitations [1], [13], the RF-to-direct-current-energy-
conversion efficiencies at ERs are typically low. As a result,
a relatively high transmit power is required to compensate for
the path loss in the propagation environment and the energy
loss in the power-conversion circuitry. On the other hand, high
transmit powers increase the risk of information leakage to the
ERs. Therefore, a power-efficient strategy satisfying the infor-
mation transmission and power transfer requirements of the
IRs and ERs, respectively, is required. Beamforming is known
to improve the power efficiency of wireless communications
[14]–[18], and is also a promising candidate for power-efficient
and secure SWIPT [4], [5].

The beamforming design is usually formulated as an op-
timization problem taking into account the system’s quality
of service (QoS) requirements1 which are specified by the
system operator/designer. In particular, the channel state in-
formation (CSI) of the channels between the transmitter and
the receivers, which can be obtained by appropriate channel
estimation techniques in practice, is exploited to optimally
control the powers and phases of the beamformer [19]. Hence,
the CSI plays an important role in optimizing the performance
of SWIPT systems. In this context, most related works have
assumed the availability of perfect CSI, i.e., there are no
CSI estimation errors, for the design of the beamformers
for SWIPT systems, e.g., [12], [20]–[24]. Unfortunately, CSI
estimation errors are unavoidable due to the nature of wireless
channels [5], [25]. Achieving near-perfect CSI estimation,
especially for multiple users and multiple antennas, entails a
high cost in terms of the required signalling overhead. Hence,
assuming perfect CSI for beamforming design either imposes a
high burden on communication systems or results in a resource
allocation mismatch such that the QoSs of the users of the
system cannot be guaranteed. Therefore, robust beamforming
designs taking into account the imperfection of the CSI are
desirable for relieving the signalling-overhead burden while
maintaining the users’ QoSs in practical SWIPT systems.

In the literature, the imperfection of the estimated CSI for
the channel between a transmitter and a receiver is usually
modeled as an error vector with random elements. Due to
the randomness and continuity of the error vector, an infinite
number of constraints have to be met to guarantee the QoS.
This leads to an intractable beamforming design problem. To
overcome this obstacle, the norms of the error vectors are
often assumed to be bounded by known values [4], [5], [12],
[26]. Then, using the S-procedure [27], the QoS constraints

1The system’s QoS requirements may include for example minimum signal-
to-interference-plus-noise ratios (SINRs) at the IRs, minimum received powers
at the ERs, and maximum tolerable leakage SINRs at the ERs.
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of the SWIPT system can be replaced by a finite number of
constraints representing upper bounds on the CSI errors [4],
[5], [12], [25], [26], [28]. Such a conservative design approach
requires an exceedingly large amount of system resources to
protect rarely occurring worst cases. Hence, less conservative
approaches have recently been proposed which tolerate the
violation of the QoS constraints with a certain chance or
probability [29]–[32].

Motivated by such probabilistic approaches, this paper fo-
cuses on the design of power-efficient transmission strategies
for secure SWIPT systems employing imperfect CSI. The
contributions of this paper can be summarized as follows.

• Taking into account the imperfection of the CSI, we
propose an outage-based chance optimization problem
with the objective to minimize the total transmit power
subject to the following three sets of QoS constraints:
i) the probability/chance that the received SINRs at the
IRs are above required levels is higher than predefined
targets; ii) the probability/chance that the leakage SINRs
at the ERs exceed secure levels is below a threshold; iii)
the probability/chance that the powers received by the
ERs are above required levels is greater than a prescribed
value. The aforementioned three types of constraints
guarantee data transmission reliability, data transmission
security, and power transfer reliability, respectively.

• Since the adopted probabilistic/chance constraints are
non-convex, we employ two different mathematical tools,
i.e., the S-procedure [27] and a Bernstein-type inequality
[33], to develop two safe approximations [34] of the
original optimization problem. Using semidefinite pro-
gramming (SDP) relaxation, the derived safe approxi-
mations are transformed into tractable SDPs which can
be optimally solved by a standard interior-point method
(IPM), e.g. the SeDuMi solver in CVX [35].

• The adopted SDP relaxations of the derived safe ap-
proximations are proved to be tight by showing that the
relaxed/transformed problems always yield rank-one opti-
mal solutions, and hence also constitute optimal solutions
to the safely approximated problems. Particularly, in our
rank-one proof, we introduce a novel method to convert
a second-order-cone-programming (SOCP) constraint into
a linear-matrix-inequality (LMI) constraint.

• Based on the worst-case runtime of the IPM [36], the
computational complexities of the reformulated SDP ver-
sions of the proposed optimization problems are charac-
terized.

This paper differs from the related works in [4], [5],
[12], [29]–[32] in terms of the problem formulation and the
mathematical solution as follows.

Problem formulation: While this paper studies a secure
SWIPT wireless system, the authors of [30] considered a
secure cognitive SWIPT system. This paper takes into account
the imperfectness of the CSI of all IRs and all ERs whereas
perfect knowledge of the IRs’ CSI was assumed in [4], [5]. A
common target in the related literature is the minimization of
the transmit power while ensuring the probabilities that the
secrecy rate of each IR [12], [31], [32] and the harvested

power at each ER [12], [32] are above certain required levels.
Thereby, the required secrecy rate constitutes one of the design
parameters which can be set by the system operator/designer.
The authors of [12] further proposed a two-stage optimiza-
tion approach to decompose the constraint on the secrecy
rate into constraints on the leakage SINRs at the ERs and
the SINRs at the IRs by introducing two new optimization
variables. Since these variables are tuned by the algorithm
in [12], the operator/designer cannot enforce/guarantee any
target values for the leakage SINRs or the IR SINRs. In
contrast, the problem formulation in this paper enables the
operator/designer to set target values for the maximum leakage
SINRs at the ERs and the minimum SINRs at the IRs. As a
result, the proposed problem formulation can guarantee that
the IRs’ leakage information at the ERs remains below a
secure level should they try to eavesdrop, e.g., below the
decoding sensitivity of the ERs. In contrast, the approaches
in [12], [30]–[32] cannot accomplish this. If proper secrecy
codes are used, e.g., [37], then having only one constraint on
the secrecy rate should be sufficient for a secure transmission.
However, if conventional error correcting codes are used, e.g.,
[38], it may indeed be beneficial to consider the constraints
on the IR SINRs and the ER SINRs separately. In fact with
conventional error correcting codes, even if the secrecy rate
of the IR is kept above a certain required level [12], [30]–
[32], the ERs may still be able to eavesdrop the IR’s message
if their decoding sensitivity levels are lower than the leakage
SINR. Hence, in this case, the schemes in [12], [30]–[32] are
less secure than the proposed schemes. Also, the optimization
problem considered in this paper is more challenging than its
counterparts in [29]–[32] as secure information transmission
to multiple IRs is considered whereas [29] does not consider
secrecy at all and [30]–[32] protect only a single IR.

Mathematical aspects: References [12], [29], and [30] do
not prove the rank-one property of the optimal beamforming
solution when SDR is applied. On the other hand, the authors
of [31], [32] have used some inequalities to transform their
SOCP constraints into LMI constraints. Although the resulting
transformed optimization problems are shown to yield rank-
one solutions, the employed transformations reduce the size
of the feasible region of the original problem which may lead
to infeasibility. In contrast, in this paper, we transform an
SOCP constraint into an LMI constraint without imposing any
restriction. Therefore, the SDP relaxations of the considered
optimization problems, i.e., the derived safe approximations,
are tight.

Notation: Lower and upper case letter y and Y: a scalar; bold
lower case letter y: a column vector; bold upper case letter Y: a
matrix; ∥·∥: the Euclidean norm; ∥·∥F : the Frobenius norm; (·)T :
the transpose operator; (·)H: the complex conjugate transpose
operator; Tr (·): the trace operator; Pr (·): the probability of
an event; O(·): the big-O notation; Y ≽ 0: Y is positive
semidefinite; y < 0: all elements of vector y are non-negative;
Ix: an x × x identity matrix; 0A×1: an A × 1 vector of all zero
elements; 0A×B: an A × B matrix of all zero elements; Re{·}:
the real part of a complex number; Eigmax (Y): the maximum
eigenvalue of Y; s+(Y) : max{Eigmax(Y), 0}; vec (Y): stacking
all the entries of Y into a column vector; R: the set of all
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Fig. 1: Example of considered system model comprising a multiple-
antenna transmitter, U = 2 single-antenna IRs, and N = 3 single-
antenna ERs.

real scalars ; CM×1: the set of all M × 1 vectors with complex
elements; HM×M: the set of all M × M Hermitian matrices;
y ∼ CN(0, σ2): y is a zero-mean circularly symmetric complex
Gaussian random variable with variance σ2; y ∼ CN(0,Y): y
is a zero-mean circularly symmetric complex Gaussian random
vector with covariance matrix Y; Y1/2: the square root of Y;
rank(Y): rank of Y; ∀: for all.

II. SystemModel

In this paper, we consider a downlink SWIPT system where
a transmitter equipped with M > 1 antennas simultaneously
transmits information and power to U IRs and N ERs, re-
spectively, using RF signals, see Fig. 1. Each IR and each ER
is equipped with a single antenna. In order to provide secure
communication, the ERs are treated as potential eavesdroppers.
Hence, the power of the information-carrying signals intended
for the IRs but received at the ERs should be kept low. On
the other hand, due to the low energy conversion efficiency at
the ERs, a high received power level is required at each ER to
compensate for the power-conversion loss. Therefore, in this
paper, we advocate the use of artificial noise to achieve both
of these goals [4], [5], [26].

Let hi ∈ CM×1, i ∈ {1, · · · ,U}, and gt ∈ CM×1, t ∈ {1, · · · ,N},
represent the actual channel coefficients of the i-th IR and the
t-th ER, respectively. Let wi ∈ CM×1 and s(I)

i ∼ CN(0, 1),
respectively, denote the beamforming vector and the data for
the i-th IR. Let vt ∈ CM×1 and s(E)

t ∼ CN(0, 1), respectively, be
the artificial-noise beamforming vector and the artificial noise
for the t-th ER. The signals received by the i-th IR and the
t-th ER are, respectively, given by

y(I)
i =

U∑
j=1

hH
i w js

(I)
j +

N∑
t=1

hH
i vt s

(E)
t + n(I)

i (1)

and

y(E)
t =

U∑
j=1

gH
t w js

(I)
j +

N∑
p=1

gH
t vps(E)

p + n(E)
t . (2)

Here, n(I)
i ∼ CN(0, σ2

I,i) and n(E)
t ∼ CN(0, σ2

E,t) are the zero-
mean circularly symmetric complex additive white Gaussian
noises observed at the i-th IR and the t-th ER, respectively.

We assume that the CSI estimation at the BS is imperfect.
Similar to [4], [5], [12], [25], [26], [28]–[32], we model the
channel as hi = h̃i+∆hi and gt = g̃t+∆gt, where h̃i ∈ CM×1 and
∆hi ∈ CM×1 are the estimated value of hi and the correspond-
ing estimation error, respectively; g̃t ∈ CM×1 and ∆gt ∈ CM×1

are the estimated value of gt and the corresponding estimation
error, respectively. We further assume that ∆hi ∼ CN(0,Hi)
and ∆gt ∼ CN(0,Gt), where Hi ≽ 0 and Gt ≽ 0 are the channel
estimation error covariance matrices which are assumed to be
known for beamformer design. Interested readers are referred
to [39] for techniques to estimate covariance matrices. Let
∆hi = H1/2

i ei and ∆gt = G1/2
t rt, where ei ∼ CN(0, IM),

rt ∼ CN(0, IM). We denote {wi} = {w1, · · · ,wU} as the set of
data beamforming vectors for all IRs and {vt} = {v1, · · · , vN}
as the set of artificial-noise beamforming vectors. The received
SINR at the i-th IR, denoted by Γi ({wi}, {vt}), and the leakage
SINR of the signal intended for the i-th IR at the t-th ER,
denoted by Γ(t)

i ({wi}, {vt}), are given in (3) and (4) at the top
of next page, respectively. The total power received by the t-th
ER, denoted by Φt ({wi}, {vt}), is given by

Φt ({wi}, {vt}) =

U∑
i=1

wH
i

(̃
gt+G1/2

t rt

)(̃
gt +G1/2

t rt

)H
wi

+

N∑
p=1

vH
p

(̃
gt +G1/2

t rt

)(̃
gt +G1/2

t rt

)H
vp.(5)

Hereafter, unless otherwise stated, {i, j} ∈ {1, · · · ,U}, and
{t, p} ∈ {1, · · · ,N}.

III. Proposed Robust Chance-Constrained Optimization
Problem

The communication between the transmitter and the IRs
and the power transfer to the ERs are considered to be in QoS
outage if either one of the following cases occurs: (1) The
SINR level at the i-th IR falls below a required level γi, ∀i,
which is referred to as SINR outage; (2) the leakage SINR of
the i-th IR at the t-th ER is above a secure level γ(t)

i , ∀i,∀t,
which is referred to as leakage-SINR outage; (3) the received
power at the t-th ER is below a required level Pt, ∀t, which
is referred to as power-transfer outage.

A. Problem Formulation

Aiming to design a power-efficient beamforming scheme,
we optimize the data beamforming vector set {wi} and the
artificial-noise beamforming vector set {vt} for minimization
of the total transmit power subject to probabilistic/chance con-
straints on SINR outages, leakage-SINR outages, and power-
transfer outages. The design is formulated as the following
optimization problem:

min
{wi},{vt}

U∑
i=1

∥wi∥2 +
N∑

t=1

∥vt∥2

s. t. Pr (Γi ({wi}, {vt}) ≥ γi) ≥ 1 − ρi,∀i,

Pr
(
Γ

(t)
i ({wi}, {vt}) ≤ γ(t)

i

)
≥ 1 − ρ(t)

i ,∀i,∀t,

Pr (Φt ({wi}, {vt}) ≥ Pt) ≥ 1 − ϱt,∀t,

(6)
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Γi ({wi}, {vt}) =
wH

i

(̃
hi +H1/2

i ei

) (̃
hi +H1/2

i ei

)H
wi∑U

j=1, j,i wH
j

(̃
hi +H1/2

i ei

) (̃
hi +H1/2

i ei

)H
w j +

∑N
t=1 vH

t

(̃
hi +H1/2

i ei

) (̃
hi +H1/2

i ei

)H
vt + σ

2
I,i

, (3)

Γ
(t)
i ({wi}, {vt}) =

wH
i

(̃
gt +G1/2

t rt

) (̃
gt +G1/2

t rt

)H
wi∑U

j=1, j,i wH
j

(̃
gt +G1/2

t rt

) (̃
gt +G1/2

t rt

)H
w j +

∑N
p=1 vH

p

(̃
gt +G1/2

t rt

) (̃
gt +G1/2

t rt

)H
vp + σ

2
E,t

. (4)

where ρi ∈ (0, 1], ρ(t)
i ∈ (0, 1], and ϱt ∈ (0, 1] are the predefined

maximum tolerable probabilities/chances of SINR outages,
leakage-SINR outages, and power-transfer outages, respec-
tively. The events Γi ({wi}, {vt}) ≥ γi and Γ(t)

i ({wi}, {vt}) ≤ γ(t)
i in

the first and second sets of probabilistic/chance constraints in
(6) are non-convex with respect to {wi} and {vt}.2 In the sequel,
we transform these events into convex forms by introducing
new variables.

To this end, we define data beamforming matrix Wi = wiwH
i

and artificial-noise beamforming matrix Vt = vtvH
t where

Wi ≽ 0, Vt ≽ 0, Wi ∈ HM×M , Vt ∈ HM×M , and Wi and Vt are
rank-one matrices.3 Using xHyyHx = yHxxHy, we rewrite the
SINR event of IR i, Γi ({wi}, {vt}) ≥ γi, as:(̃

hi +H1/2
i ei

)H
Ai

(̃
hi +H1/2

i ei

)
≥ σ2

I,i, (7)

where Ai =
(
1 + 1

γi

)
Wi − C and C =

∑U
j=1 W j +

∑N
t=1 Vt.

Further manipulations exploiting the property HH
i = Hi of

covariance matrices lead to the following equivalent form of
(7):

fi(ei) , eH
i H1/2

i AiH1/2
i ei + 2Re{eH

i H1/2
i Aih̃i}

+h̃H
i Aih̃i − σ2

I,i ≥ 0. (8)

Similarly, the information leakage event of IR i,
Γ

(t)
i ({wi}, {vt}) ≤ γ(t)

i , can be recast as

k(t)
i (rt) , rH

t G1/2
t BiG1/2

t rt + 2Re{rH
t G1/2

t Bĩgt}
+g̃H

t Bĩgt + σ
2
E,t ≥ 0, (9)

where Bi = C −
(
1 + 1

γ(t)
i

)
Wi.

Furthermore, the harvested power event of ER t,
Φt ({wi}, {vt}) ≥ Pt, is equivalent to:

dt(rt) , rH
t G1/2

t CG1/2
t rt + 2Re{rH

t G1/2
t Cg̃t}

+g̃H
t Cg̃t − Pt ≥ 0. (10)

Using (8), (9), and (10), (6) can be equivalently stated as:

min
{Wi},{Vt}∈HM×M

Tr

 U∑
i=1

Wi +

N∑
t=1

Vt


s. t. Pr ( fi(ei) ≥ 0) ≥ 1 − ρi, ∀i,

Pr
(
k(t)

i (rt) ≥ 0
)
≥ 1 − ρ(t)

i , ∀i,∀t,

Pr (dt(rt) ≥ 0) ≥ 1 − ϱt,∀t,

Wi ≽ 0, ∀i, Vt ≽ 0, ∀t,

rank(Wi) = 1, ∀i, rank(Vt) = 1, ∀t,

(11)

2Note that the event Φt ({wi}, {vt}) ≥ Pt in the third constraint in (6) is
convex as it is a quadratic form in {wi} and {vt} with positive coefficients for
the second-degree terms, see (5).

3A matrix is rank-one if and only if it has only one linearly independent
column/row.

where {Wi} = {W1, · · · ,WU} and {Vt} = {V1, · · · ,VN} are
two sets of beamforming matrices. Solving problem (11) is
challenging due to the fact that the probabilistic constraints
neither have simple closed-forms nor admit convexity.4 In
other words, (11) is an NP-hard problem which cannot be
solved in polynomial time. To overcome this challenge, our
goal is to derive convex upper bounds for the chance con-
straints in (11).

B. Safe Approximations
First, we tackle the intractable probabilistic constraints in

(11) by replacing them by computationally tractable, i.e.,
convex approximations [34]. These approximations result in
a convex optimization problem with respect to {Wi} and {Vt},
which can be regarded as a safe approximation [34], [40] if
every feasible solution to the approximated problem is also
feasible for the original problem (11).5 In other words, the
optimal solution to the safe approximation problem is a fea-
sible suboptimal solution to the original problem. Therefore,
the problem based on safe approximations serves as an upper
bound for the original problem [34], [40]. Recently, three
safe approximation methods have been introduced in [40],
namely Method I: sphere bounding; Method II: Bernstein-
type inequality; and Method III: decomposition-based large
deviation inequality. In Method I, the chance constraints are
approximated by assuming a spherical bound on the norm of
the error vectors, while in Methods II and III, large deviation
inequalities for complex Gaussian quadratic forms are utilized
for constructing efficiently computable convex approxima-
tions. As reported in [40], Method II generally results in the
tightest approximation among the three methods. The results
in [40] also indicate that in terms of power efficiency and
feasibility rate,6 Method II yields best performance followed
by Method I and Method III. The poor performance of Method
III is due to the fact that its approximation tightness is
sacrificed for improved computational efficiency. Since, in
this paper, we are interested in developing power-efficient
strategies, in the following, we adopt Methods I and II to
derive two safe approximations for (11). It is noted that our
optimization problem is fundamentally different from the one
considered in [40] where the objective is to minimize the
total transmit power subject to IR rate outage constraints for
a multiple-input single-output (MISO) downlink system.

4Although events fi(ei) ≥ 0, k(t)
i (rt) ≥ 0, and dt(rt) ≥ 0 are convex, the

corresponding probabilistic constraints in (11) are not convex.
5We note that a feasible solution to the original problem (11) may be

infeasible for the approximated problem.
6The feasibility rate is the probability that the optimization problem is

feasible [40].
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IV. Proposed Safe Approximations

In this section, we introduce two safe approximations of
(11) and perform a complexity analysis.

A. S-procedure Based Method

Let us assume that ei and rt are confined to the complex
spherical sets ξi , {ei ∈ CM×1 | ∥ei∥2 ≤ R2

i } and ψt ,
{rt ∈ CM×1 | ∥rt∥2 ≤ Q2

t } having M dimensions and radii Ri

and Qt, respectively. Since the error vector ei ∼ CN(0, IM)
is confined to the spherical set ξi, the probabilistic/chance
constraint Pr ( fi(ei) ≥ 0) ≥ 1 − ρi holds if [40]

fi(ei) ≥ 0 and Pr (ei ∈ ξi) ≥ 1 − ρi. (12)

The second condition in (12) is always true if the radius of

the spherical set ξi is selected such that Ri =

√
Tm(1−ρi)

2 where
Tm (·) is the inverse cumulative distribution function of a Chi-
square random variable with m = 2M degrees of freedom.
Therefore, using ∥ei∥2 = eH

i IMei, the probabilistic constraint
Pr ( fi(ei) ≥ 0) ≥ 1 − ρi can be safely approximated by the
following two constraints:

fi (ei) ≥ 0 and eH
i IMei −

Tm (1 − ρi)
2

≤ 0. (13)

Applying similar steps for Pr
(
k(t)

i (rt) ≥ 0
)
≥ ρ(t)

i and
Pr (dt(rt) ≥ 0) ≥ ϱt, we introduce the safe approximation of
problem (11) as

min
{Wi},{Vt}∈HM×M

Tr

 U∑
i=1

Wi +

N∑
t=1

Vt


s. t. fi(ei) ≥ 0, eH

i IMei −
Tm (1 − ρi)

2
≤ 0, ∀i,

k(t)
i (rt) ≥ 0, rH

t IMrt −
Tm

(
1 − ρ(t)

i

)
2

≤ 0, ∀i, ∀t,

dt(rt) ≥ 0, rH
t IMrt −

Tm (1 − ϱt)
2

≤ 0, ∀t,

Wi ≽ 0, ∀i, Vt ≽ 0, ∀t,

rank(Wi) = 1, ∀i, rank(Vt) = 1, ∀t.
(14)

Remark 1: The values of the radii Ri and Qt of the spherical
sets ξi and ψt are not required in (14) as they have been

implicitly incorporated into the outages, e.g., Ri =

√
Tm(1−ρi)

2 .
In other words, these radii are determined by the maximum
tolerable outage values, e.g., ρi.

The number of constraints in (14) is infinite7 due to the
randomness and continuousness of the error vectors ei and rt.
To proceed, we introduce the following lemma.

Lemma 1 (S-procedure [27]): Let mn(x) = xHYnx +
2Re{xHyn} + cn, n ∈ {1, 2}, where Yn ∈ HM×M , yn ∈ CM×1,
and cn ∈ R. If there exists an x̌ such that mn(x̌) < 0, then
∀x ∈ CM×1, the following statements are equivalent:

1) m1(x) ≥ 0 and m2(x) ≤ 0 are satisfied ∀x ∈ CM×1.

7Problem (14) is a semi-infinite optimization problem, i.e., an optimiza-
tion problem with a finite number of variables and an infinite number of
constraints.

2) There exists a β ≥ 0 such that[
Y1 y1
yH

1 c1

]
+ β

[
Y2 y2
yH

2 c2

]
≽ 0.

Exploiting Lemma 1 and relaxing the rank-one constraints on
Wi and Vt, one can transform optimization problem (14) into
the standard convex SDP form given in (15) at the top of next
page where αi, λ

(t)
i , and βt are auxiliary optimization variables.

Remark 2: The LMI constraints in (15) are similar to those
of the norm-bounded approaches in e.g., [26], [28]. However,
the main difference between these two approaches is that
the radii, i.e., the norms of the error vectors, are predefined
values in the norm-bounded approaches whereas they can be
controlled via the maximum tolerable outage probabilities in
the proposed scheme.

To arrive at (15), we have relaxed the rank-one constraints
on the beamforming matrices Wi and Vt. In the following
theorem, we will show that relaxing the rank-one constraints
does not affect the optimality of the solutions.

Theorem 1: If problem (15) is feasible,8 then its optimal
solution yields rank-one matrices Wi and Vt.

Proof: Please refer to Appendix A.
As a consequence of Theorem 1, the optimal beamforming
vectors w⋆

i and v⋆t are, respectively, obtained as w⋆
i =√

λ(w)
i z(w)

i and v⋆t =
√
λ(v)

t z(v)
t , where λ(w)

i and λ(v)
t are the

non-zero eigenvalues and z(w)
i and z(v)

t are the corresponding
eigenvectors of the optimal rank-one matrices W⋆

i and V⋆
t ,

respectively. Since (15) is a safe approximation of (11), W⋆
i

and V⋆
t are suboptimal solutions to (11). As (11) is equivalent

to (6), w⋆
i and v⋆t are suboptimal solutions to the original

problem (6).

B. Bernstein-type-inequality Based Method

In the previous subsection, bounded-norm conditions have
been implicitly imposed on the error vectors via outage prob-
ability constraints to develop the S-procedure based method.
Imposing these constraints may degrade the system perfor-
mance as the feasible region of the original optimization
problem is reduced. To overcome this problem, here, we
adopt a different approach to obtain another type of robust
formulation, i.e., another safe convex approximation of the
original problem (11). This convex approximation approach
is based on a large deviation inequality, i.e., a Berstein-type
inequality, which bounds the probability that a sum of random
variables deviates from its mean [40]. To begin, let us recall
the following lemma.

Lemma 2 (Bernstein-type inequality [33]): Consider the
following random variable f (x) = xHYx + 2Re{xHu}, where
x ∼ CN(0, IM), Y ∈ HM×M , and u ∈ CM×1. For all δ > 0, the
following statement holds:

Pr
(

f (x) ≥ Tr (Y) −
√

2δ
√
∥Y∥2F + 2∥u∥2 − δs+(Y)

)
≥ 1 − e−δ.

8If (15) is infeasible, then some mechanisms such as admission control and
quality-of-service adjustment are required at the Medium Access Control layer
to restore the feasibility of the optimization problem. However, algorithms
ensuring the feasibility of the optimization problem require a cross-layer
design which is beyond the scope of this paper.
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min
{Wi},{Vt}∈HM×M ,αi,λ

(t)
i ,βt

Tr

 U∑
i=1

Wi +

N∑
t=1

Vt


s. t.

[
H1/2

i AiH1/2
i + αiIM H1/2

i Aih̃i

h̃H
i AiH1/2

i h̃H
i Aih̃i − σ2

I,i − αi
Tm(1−ρi)

2

]
≽ 0, αi ≥ 0, ∀i,G1/2

t BiG1/2
t + λ

(t)
i IM G1/2

t Big̃t

g̃H
t BiG1/2

t g̃H
t Big̃t + σ

2
E,t − λ

(t)
i
Tm

(
1−ρ(t)

i

)
2

 ≽ 0, λ(t)
i ≥ 0, ∀i,∀t,[

G1/2
t CG1/2

t + βtIM G1/2
t Cg̃t

g̃H
t CG1/2

t g̃H
t Cg̃t − Pt − βt

Tm(1−ϱt)
2

]
≽ 0, βt ≥ 0, ∀t,

Wi ≽ 0, ∀i, Vt ≽ 0, ∀t,

(15)

With δi = − ln ρi and Lemma 2, the SINR outage constraint
Pr ( fi(ei) ≥ 0) ≥ 1 − ρi in (11) can be rewritten as

Tr
(
H1/2

i AiH1/2
i

)
−
√

2δi

√
∥H1/2

i AiH1/2
i ∥2F + 2∥H1/2

i Aih̃i∥2

−δis+
(
H1/2

i AiH1/2
i

)
≥ σ2

I,i − h̃H
i Aih̃i. (16)

Then, by introducing two auxiliary optimization variables θi

and ϑi, (16) is further recast as the following equivalent
constraint:

Tr
(
H1/2

i AiH1/2
i

)
−
√

2δiθi − δiϑi ≥ σ2
I,i − h̃H

i Aih̃i, (17)√
∥H1/2

i AiH1/2
i ∥2F + 2∥H1/2

i Aih̃i∥2 ≤ θi, (18)

ϑiIM +H1/2
i AiH1/2

i ≽ 0, (19)
ϑi ≥ 0. (20)

Note that (18) can be equivalently written as a second-order-
cone (SOC) constraint∥∥∥∥∥∥

 √2H1/2
i Aih̃i

vec
(
H1/2

i AiH1/2
i

)∥∥∥∥∥∥ ≤ θi. (21)

Similarly, by setting δ(t)
i = − ln ρ(t)

i , and introducing two
auxiliary optimization variables θ(t)

i and ϑ(t)
i , the leakage outage

constraint of the SINR, Pr
(
k(t)

i (rt) ≥ 0
)
≥ 1 − ρ(t)

i , in (11) can
be safely approximated by the following constraints:

Tr
(
G1/2

t BiG1/2
t

)
−
√

2δ(t)
i θ

(t)
i − δ

(t)
i ϑ

(t)
i ≥ −σ

2
E,t − g̃H

t Bĩgt, (22)

∥∥∥∥∥∥
 √

2G1/2
t Bĩgt

vec
(
G1/2

t BiG1/2
t

)∥∥∥∥∥∥ ≤ θ(t)
i , (23)

ϑ(t)
i IM +G1/2

t BiG1/2
t ≽ 0, (24)

ϑ(t)
i ≥ 0. (25)

Using the same approach, the power-transfer outage constraint,
Pr (dt(rt) ≥ 0) ≥ 1 − ϱt, in (11) is safely approximated by:

Tr
(
G1/2

t CG1/2
t

)
−
√

2µtat − µtbt ≥ Pt − g̃H
t Cg̃t, (26)∥∥∥∥∥∥

 √
2G1/2

t Cg̃t

vec
(
G1/2

t CG1/2
t

)∥∥∥∥∥∥ ≤ at, (27)

btIM +G1/2
t CG1/2

t ≽ 0, (28)
bt ≥ 0, (29)

where at and bt are auxiliary optimization variables and µt =

− ln ϱt. Therefore, the relaxed rank-one-constraint problem of
the safe approximation of problem (11) can be written as

min
{Wi},{Vt}∈HM×M ,θi,ϑi,θ

(t)
i ,ϑ

(t)
i ,at ,bt

Tr

 U∑
i=1

Wi +

N∑
t=1

Vt


s. t. (17), (19), (20), (21), ∀i,

(22), (23), (24), (25), ∀i,∀t,

(26), (27), (28), (29),∀t,

Wi ≽ 0, ∀i, Vt ≽ 0, ∀t.

(30)

The SOC constraints in (21), (23), and (27) are sub-cases of
an SDP constraint [15] since any SOC constraint can be recast
in an LMI form using the Schur complement [27]. Hence, the
optimization problem in (30) is convex. Although the rank-
one constraints on the beamforming matrices Wi and Vt have
been relaxed to arrive at (30), the following theorem reveals
that the relaxation preserves the optimality of the solution to
the non-rank-one-relaxed problem , i.e., (30) with rank-one
constraints on Wi and Vt.

Theorem 2: For the optimal solution of (30), matrices Wi

and Vt are always rank-one if the problem is feasible.
Proof: Please refer to Apendix B.

Hence, we can obtain beamforming vectors w⋆
i and v⋆t from

W⋆
i and V⋆

t , respectively, using the same technique as in
Section IV-A as robust suboptimal solutions to the original
problem (6).

C. Complexity Analysis

Hereafter, we refer to the S-procedure based method and
the Bernstein-type-inequality based method as Method I and
Method II, respectively. Since Method I, i.e., problem (15),
and Method II, i.e., problem (30), contain LMI and SOC
constraints, a standard IPM [27], [36] can be used to find
their optimal solutions. To that end, we consider the worst-case
runtime of the IPM to analyze the computational complexities
of the proposed methods as follows.

Definition 1: For a given ϵ > 0, the set of {Wϵ
i } and {Vϵ

t } is
called an ϵ-solution to problem (15) or (30) if

Tr

 U∑
i=1

Wϵ
i +

N∑
t=1

Vϵ
t

 ≤ min
{Wi},{Vt}∈HM×M

Tr

 U∑
i=1

Wi +

N∑
t=1

Vt

 + ϵ.
(31)
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It can be observed that the number of decision variables of
problems (15) and (30) is on the order of (U + N)M2. Let
ζ = U + N, η = ζ + UN, and n = O

(
ζM2
)
. We introduce the

following lemma.
Lemma 3: The computational complexities to obtain ϵ-

solutions to problems (15) and (30) are respectively

ln(ϵ−1)
√
η(M + 1) + ζM

[
η(M + 1)2(M + 1 + n)

+ζM2(M + n) + n2
]

n (32)

and

ln(ϵ−1)
√

(ζ + η)M + 4η
[
η
(
(M2 + M + 1)2 + 2n + 2

)
+(ζ + η)M2(M + n) + n2

]
n. (33)

Proof: Due to space limitation, we only provide a sketch
of the proof. First, Method I, i.e., problem (15), has η
LMI constraints of size (M + 1), and ζ LMI constraints of
size M. Second, Method II, i.e., problem (30), has 2η LMI
constraints of size 1, (ζ + η) LMI constraints of size M,
and η SOC constraints of dimension (M2 + M + 1). Based
on these observations, one can follow the same steps as in
[40, Section V-A] to arrive at (32) and (33). Note that the
terms ln(ϵ−1)

√
η(M + 1) + ζM and ln(ϵ−1)

√
(ζ + η)M + 4η in

(32) and (33) are the iteration complexities [40] required for
obtaining ϵ-solutions to problems (15) and (30), respectively,
while the remaining terms represent the per-iteration compu-
tation costs [40].

It can be observed from Lemma 3 that the computational
complexity of Method I is lower than that of Method II.9 In
the following, we analyze the performance of the proposed
methods in terms of power consumption.

V. Simulation Results

We evaluate the performance of the two proposed methods
and compare them against the probabilistic-constraint-based
scheme introduced in [29], which is considered as the baseline
scheme, the norm-bounded approach proposed in [12], and a
benchmark scheme in [22]. For the baseline scheme, the data
transmission and power transfer reliabilities are guaranteed.
However, secure data transmission is not considered. The
SeDuMi provided by the CVX optimization package [35]
is employed to obtain the sets of the optimal beamforming
matrices W⋆

i and V⋆
t .

A. Simulation Setup

Consider a transmitter supporting two IRs and two ERs,
i.e., U = N = 2. The estimated channel vectors h̃i and
g̃t are respectively modelled as: h̃i = Hi(l

(I)
i )hi,w and g̃t =

Gt(l
(E)
t )gt,w, where hi,w ∼ CN(0, IM); gt,w ∼ CN(0, IM);

Hi(l
(I)
i ) = c

4π fc

(
1

l(I)
i

) κ
2
; Gt(l

(E)
t ) = c

4π fc

(
1

l(E)
t

) κ
2
; l(I)

i = 100 m, ∀i,

and l(E)
t = 9 m, ∀t, are the distances from the transmitter to

9Consider a simple example when M is large, U = N = M
2 , and

n = ζM2 = (U + N)M2 = M3. The dominating terms in the com-
plexities of Method I and Method II are ln(ϵ−1)

8

√
4M + 9M2 + M3 M10 and

ln(ϵ−1)
8

√
16M + 12M2 + M3 M10, respectively.
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Fig. 2: Average total transmit power versus required IRs’ SINR for
different numbers of antennas.
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Fig. 3: The histograms of the average leakage SINRs of the IR signals
observed at the ERs when the required IR SINR target is γi = 18 dB,
∀i. The number of antennas is M = 6.

the IRs and ERs, respectively; c = 3 × 108 ms−1 is the speed
of light; fc = 900 MHz is the carrier frequency; and κ = 2.7
is the path loss exponent. The noise power at each IR and ER
is assumed to be −70 dBm. The error covariance matrices are
given as Hi = ε

(
Hi(l

(I)
i )
)2

IM and Gt = ε
(
Gt(l

(E)
t )
)2

IM where
ε = 0.001. Monte-Carlo simulations have been carried out
based on 500 channel realizations. The ER decoding sensitivity
level is set to γ(t)

i = −5 dB ∀i,∀t. The SINR outage, leakage-
SINR outage, and power-transfer outage probabilities are set
to 10 %, i.e., ρi = ρ

(t)
i = ϱt = 0.1, ∀i,∀t. The required power

level at the ERs is Pt = −10 dBm, ∀t.

B. Performance Evaluation

Fig. 2 shows the average total transmit power versus the
required SINR at each IR for different numbers of antennas
for the proposed methods, the baseline scheme in [29], and
the non-robust scheme in [22]. This figure indicates that for
low-to-medium required IR SINRs, e.g. the SINR range from
0 dB to 12 dB, the tightenesses of the two approximations
do not have much impact on their performances as the effect
of the imperfect CSI is still easy to handle and hence the
performances of the two proposed approaches are almost
identical. However, as the IR target SINRs increase, the impact
of the imperfect CSI is more severe and harder to cope with.
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In such situation, Method II outperforms Method I as the
approximation employed in the former is tighter than that in
the latter. This is due to the fact that a bounded-norm model
has been implicitly imposed on the uncertainty set of the CSI
for the derivation of Method I but not for Method II. The
same performance trend for the two types of approximations
has also been reported in [40] for conventional information
transmission in MISO downlink scenarios.

Fig. 2 reveals that the baseline scheme consumes less power,
e.g. around 0.8 dB and 0.5 dB less at an IR target SINR of 10
dB, than the proposed approach for 6 and 8 antennas, respec-
tively. The price paid for this lower power consumption is that
the leakage SINR cannot be controlled, i.e., secrecy cannot be
guaranteed. This will be shown and discussed more in detail in
Fig. 3. At IR target SINRs less than 6 dB, the performances
of the proposed methods are close to that of the baseline.
However, as the IR target SINR increases, the performance gap
between the proposed methods and the baseline widens. The
reason for this is that the leakage SINR of the IRs increases
with the IRs’ SINR requirements. Therefore, a higher power
consumption is required by the proposed approaches as more
artificial noise has to be generated to impact the ERs, hence,
guaranteeing the required level of security for all IRs.

Since (6) and its equivalent form (11) are non-convex op-
timization problems, finding the globally optimal solution by
exhaustive search is computational infeasible given the large
numbers of optimization variables. Therefore, a benchmark
scheme is considered in Fig. 2. In particular, the benchmark
scheme is based on [22] where perfect CSI is available for
resource allocation. Thus, the performance of the benchmark
scheme serves as a performance upper bound for the proposed
Methods I and II. It can be observed from Fig. 2 that in the IR
target SINR range from 0 dB to 20 dB, the performance gap
between Method II and the benchmark scheme is less than
1 dB while the gap between Method I and the benchmark
scheme is around 1 dB. This underlines the accuracy of our
approximations. We note that the baseline scheme consumes
slightly less transmit power than the benchmark scheme does.
This benefit comes at the expense of no guaranteed commu-
nication secrecy.

Fig. 3 shows the histograms of the average leakage SINR
at the ERs. To obtain the results in these figures, for each
feasible channel realization,10 we first generated beamforming
vectors for all methods. We then generated 1000 random error
vectors for each channel realization to test the performance
of each method. The resulting leakage SINRs, SINR levels,
and ER power levels were averaged over the ERs and the
feasible channel realizations. The results in Fig. 3 indicate
that the information delivered to the IRs with the baseline
scheme is at a very high risk of being decoded by the ERs
as the leakage SINR is more than 10 dB higher than the ER
decoding sensitivity level of -5 dB for all occurrences. On
the other hand, the proposed methods successfully guarantee
secure information transmission to the IRs as they push the
leakage SINR well below the ER decoding sensitivity level for

10We refer to a channel condition as feasible if all considered methods
return feasible solutions.
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The number of antennas is M = 6.
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Fig. 5: Average total transmit power versus required power at each
ER for different required IR SINR targets.

all cases. The conservatism of Method I can be observed as
it pushes the leakage SINR around 0.7 dB below the required
value, i.e., 0.2 dB lower than Method II.

In Fig. 4, we compare our proposed methods against the
norm-bounded scheme in [12]. As mentioned earlier, the
two-stage optimization scheme in [12] can only ensure the
individual secrecy rates of all IRs. In this comparison, we have
given more privilege to the scheme by considering only one of
those stages, i.e., [12, Problem (36)], where we have directly
set the ER decoding sensitivity level to γ(t)

i = −5 dB and varied
the required IR target SINR γi from −10 dB to 10 dB. From
the figure, it is clear that the proposed methods outperform the
scheme in [12] in terms of power efficiency. For example, the
optimization problem in [12] yields infeasible solutions for all
channel realizations if the required IR SINRs exceed −6 dB
while the proposed schemes can still operate.

Fig. 5 shows the average total transmit power versus the
required power level Pt at the ERs for different numbers
of transmit antennas and different required IR SINRs. The
average transmit power is a monotonically increasing function
of the power required at the ERs. For a required receive power
range from −10 dBm to 0 dBm, the performances of the two
proposed methods are almost identical. However, when the
power required at the ER is greater than 0 dBm, Method I
consumes more power than Method II. The performance gap
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widens to around 0.8 dB as the ER’s power demand increases
to 10 dBm. This again confirms the improved tightness of
the approximation employed in Method II compared to that
employed in Method I for relatively high ER power demands.
For the considered scenario, the required total transmit power
is mainly determined by the required powers at the ERs which
have a much more significant effect on the total transmit power
than the required IR SINR, cf. Figs. 2 and 5.

For Fig. 6, we have set identical probability/chance values
for the maximum tolerable SINR outages, the leakage-SINR
outages, and the power-transfer outages, i.e., ρi = ρ

(t)
i = ϱt =

ρ, ∀i, ∀t. Hereafter, ρ is referred to as outage probability.
Fig. 6 illustrates the average total transmit power versus the
outage probability for different numbers of transmit antennas.
As can be observed, a slight increase in the transmit power
level significantly improves the QoS, i.e., reduces the outage
probability. For instance, for M = 6, an increase of 0.57 dB in
the transmit power of Method I and an increase of 0.47 dB in
that of Method II significantly reduce the outage probability
from 30 % to 1 %.

Finally, from Figs. 2, 5, and 6, one can conclude that
increasing the number of antennas reduces the power con-
sumption of the considered schemes. This is a result of
the improved beamformer resolution due to the extra spatial
degrees of freedom introduced by additional antennas.

VI. Conclusions and FutureWork

We have proposed a chance-constrained optimization prob-
lem to tackle the imperfection of the instantaneous CSI for
the design of a power-efficient and secure SWIPT system.
To handle non-convex QoS constraints, we have derived two
robust reformulations of the proposed problem, i.e., Method I
and Method II, adopting safe approximation techniques. Our
analysis has revealed that Method I has a lower computational
complexity than Method II. On the other hand, simulation
results indicate that when the impact of imperfect CSI is
more difficult to mitigate, i.e., at relatively high IR target
SINRs, Method II outperforms Method I as it employs a tighter
approximation. Both methods closely follow the performance
of a benchmark scheme, where perfect CSI is available for
resource allocation, while they outperform a baseline scheme

in guaranteeing secure data transmissions. The results also
show that a small increase in the transmit power leads to a
significant reduction of the outage probability which in turn
improves the QoS of the communication system.

A possible extension of this work is to consider a MIMO
scenario where IRs and ERs are equipped with multiple-
antennas. In such scenario, the expressions of the SINR, leak-
age SINR, and total power received at each ER will be different
from those in this paper. Besides, the estimation errors will be
characterized by matrices. As for Method I, it is possible to
extend our robust beamforming design to the case of MIMO
SWIPT involving error matrices. In particular, we can follow
[41, Lemma 1] and apply the S-procedure. However, as for
the generalization of the proposed algorithms for Method
II, the extension to the case of MIMO is a non-trivial task
which requires a new problem-solving methodology and more
investigation.
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Appendix A
Proof of Theorem 1

Now, we investigate the structure of the optimal beamform-
ing matrix Wi. To this end, we rewrite (15) as:

min
{Wi},{Vt}∈HM×M ,αi,λ

(t)
i ,βt

Tr

 U∑
i=1

Wi +

N∑
t=1

Vt


s. t. Di(αi) + EH

i AiEi ≽ 0,∀i

F(t)
i (λ(t)

i ) + LH
t BiLt ≽ 0, ∀i,∀t,

Kt(βt) + LH
t CLt ≽ 0, ∀t,

αi ≥ 0, ∀i, λ(t)
i ≥ 0, ∀i,∀t, βt ≥ 0, ∀t,

Wi ≽ 0, ∀i, Vt ≽ 0, ∀t,
(34)

where

Di(αi) =

[
αiIM 0M×1

01×M −σ2
I,i − αi

Tm(1−ρi)
2

]
,

Ei =
[
H1/2

i h̃i

]
,

F(t)
i (λ(t)

i ) =

[
λ(t)

i IM 0M×1

01×M −σ2
E,t − λ

(t)
i Ω

]
,

Lt =
[
G1/2

t g̃t

]
, and

Kt(βt) =

[
βtIM 0M×1
01×M −Pt − βtΩ

]
.
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The Lagrangian of (34) can be expressed as

L ({Wi}, {Vt},Υ) =
U∑

i=1

Tr (Wi) +
N∑

t=1

Tr (Vt)

−
U∑

i=1

Tr
(
Qi

[
Di(αi) + EH

i AiEi

])
−

U∑
i=1

κiαi

−
U∑

i=1

N∑
t=1

Tr
(
R(t)

i

[
F(t)

i (λ(t)
i ) + LH

t BiLt

])
−

U∑
i=1

N∑
t=1

µ(t)
i λ

(t)
i −

N∑
t=1

Tr
(
St

[
Kt(βt) + LH

t CLt

])
−

N∑
t=1

ψtβt −
U∑

i=1

Tr (TiWi) −
N∑

t=1

Tr (ZtVt) , (35)

where Qi, κi, R(t)
i , µ(t)

i , St, ψt, Ti, and Zt are the Lagrange mul-
tipliers associated with the constraints in (34). Furthermore, we
have α =

[
α1, · · · , αU

]T
, µ =

[
µ1

1, · · · , µ1
U , · · · , µN

1 , · · · , µN
U ,
]T

,

κ =
[
κ1, · · · , κU

]T
, ψ =

[
ψ1, · · · , ψN

]T
, {Qi} =

{Q1, · · · ,QU}, {R(t)
i } = {R

(1)
1 , · · · ,R(1)

U , · · · ,R(N)
1 , · · · ,R(N)

U },
{St} = {S1, · · · ,SN}, {Ti} = {T1, · · · ,TU}, {Zt} = {Z1, · · · ,ZN},
and finally
Υ =
{
α, κ,µ,ψ, {Qi}, {R(t)

i }, {St}, {Ti}, {Zt}
}
.

Let g (Υ) be the dual function of (34) given by

g (Υ) = min
{Wi},{Vt}∈HM×M

L ({Wi}, {Vt},Υ) . (36)

Therefore, the corresponding dual problem of (34) can be
stated as:

max
Υ

g (Υ) ,

s. t. α < 0, κ < 0, µ < 0, ψ < 0,
Qi ≽ 0,Ti ≽ 0, St ≽ 0,Zt ≽ 0, R(t)

i ≽ 0, ∀i, ∀t.

(37)

Since problem (34) is convex and satisfies Slater’s constraint
qualification [27], the duality gap is zero and the optimal
solution of (34) can be obtained by solving (37).

Let Υ⋆ = {α⋆, κ⋆,µ⋆,ψ⋆, {Q⋆
i }, {R

(t)⋆
i }, {S⋆t }, {T⋆

i }, {Z⋆
t }} be

the optimal solution to dual problem (37), then the corre-
sponding optimal solution

(
{W⋆

i }, {V⋆
t }
)

to problem (34) can
be obtained as

g(Υ⋆) = min
{Wi},{Vt}∈HM×M

L
(
{Wi}, {Vt},Υ⋆

)
. (38)

Substituting for Ai, Bi, and C in (35), after some mathe-
matical manipulations, one can arrive at

L
(
{Wi}, {Vt},Υ⋆

)
=

U∑
i=1

Tr (ΘiWi) +
N∑

t=1

Tr (ΞtVt) + χ (39)

where Θi = IM − 1
γi

EiQ⋆
i EH

i +
∑N

t=1
1
γ(t)

i
LtR(t)⋆

i LH
t −∑N

t=1 LtS⋆t LH
t − T⋆

i , Ξt = IM +
∑U

i=1 EiQ⋆
i EH

i +

∑N
p=1
∑U

i=1 LpR(p)⋆
i LH

p −
∑N

p=1 LpS⋆p LH
p − Z⋆

t , and

χ = −
U∑

i=1

Tr

Q⋆
i

Di(α⋆i ) + EH
i

 U∑
j=1, j,i

W j

Ei




−
U∑

i=1

N∑
t=1

Tr

R(t)⋆
i

F(t)
i (λ(t)⋆

i ) + LH
t

 U∑
j=1, j,i

W j

Lt




−
U∑

i=1

κ⋆i α
⋆
i −

U∑
i=1

N∑
t=1

µ(t)⋆
i λ(t)⋆

i −
N∑

t=1

ψ⋆t β
⋆
t . (40)

Therefore, we can rewrite (38) as

g(Υ⋆) = min
{Wi}∈HM×M

U∑
i=1

Tr (ΘiWi) + min
{Vt}∈HM×M

N∑
t=1

Tr (ΞtVt) . (41)

Since (15) is feasible, the optimal value of its equivalent
form, i.e., (34), is non-negative. Furthermore, the optimal
duality gap between primary problem (34) and its Lagrange
dual problem (37) is zero. Therefore, Θi and Ξt must be
positive semi-definite, i.e., Θi ≽ 0, ∀i, and Ξt ≽ 0, ∀t, to
ensure that the Lagrangian dual function is bounded from
below, i.e., the Lagrangian dual function cannot become -∞.
We continue by introducing the following proposition:

Proposition 1: If an M×M Hermitian matrix Wi has a rank
of K ≤ M, then it can be expressed as Wi =

∑K
j=1 νi,kai,kaH

i,k,
where νi,k and ai,k are the kth non-zero eigenvalue and the
corresponding eigenvector of Wi, respectively.11

In the following, we prove the rank-one property of the
solution of (41) by contradiction. Assuming that the optimal
solution of (41), W⋆

i , has rank K > 1, ∀i. Proposition 1
indicates that W⋆

i =
∑K

k=1 νi,kai,kaH
i,k. Now we construct another

feasible solution to (41) as

W
⋆

i = νi,pai,paH
i,p, ∀i, (42)

where p = arg min
k∈{1,··· ,K}

νi,kaH
i,kΘiai,k. Combining Θi ≽ 0 and

(42) reveals that
U∑

i=1

Tr
(
ΘiW

⋆

i

)
<

U∑
i=1

Tr
(
ΘiW⋆

i

)
. (43)

The inequality in (43) contradicts the optimality of W⋆
i .

Therefore, W⋆
i must be a rank-one matrix for all i. Following

similar arguments, one can show that V⋆
t must be a rank-one

matrix for all t.

Appendix B
Proof of Theorem 2

This proof is based on a fact that the SOC constraints in
(21), (23), and (27) can be cast as LMIs. With some abuse
of notation, in this proof we reuse Bi, C, Di, Ei, Ti, Pi, Kp,
and ui from Section III and Appendix A. In the sequel, we
first show the transformation of (21). Exploiting the Schur
complement with some mathematical manipulations, (21) can
be equivalently written as Bi ≽ 0 where

Bi =


θiIM2+M

 √2H1/2
i Aih̃i

vec
(
H1/2

i AiH1/2
i

) √2H1/2
i Aih̃i

vec
(
H1/2

i AiH1/2
i

)H θi

 . (44)

11Proposition 1 can be proved using the facts that the Hermitian matrix Wi
has K real non-zero eigenvalues and K orthogonal eigenvectors.
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We further decompose Bi as

Bi = C (θi) + Di + DH
i + Ei + EH

i (45)

where

C (θi) =

[
θiIM2+M 0(M2+M)×1

0H
1×(M2+M) θi

]
,

Di =


0(M2+M)×(M2+M) 0(M2+M)×1[√

2H1/2
i Aih̃i

0M2×1

]H
0

 ,
Ei =


0(M2+M)×(M2+M) 0(M2+M)×1[

0M×1

vec
(
H1/2

i AiH1/2
i

)]H 0

 .
Moreover, matrix Di can be further decomposed as

Di =
√

2
[
0(M2+M)×1

1

]
h̃H

i AiH1/2
i

[
IM 0M×1 · · · 0M×1

]
= Ti

(̃
hi

)
AiPi

(
H1/2

i

)
, (46)

where Ti

(̃
hi

)
=

√
2
[
0(M2+M)×1

1

]
h̃H

i , Pi

(
H1/2

i

)
=

H1/2
i

[
IM 0M×1 · · · 0M×1

]
, and

[
IM 0M×1 · · · 0M×1

]
is

an M×(M2+M+1) matrix. Let Ui =
[
0M×1 · · · 0M×1 ui

]T
be an (M2 + M + 1) × M matrix where ui is an M × 1 vector
with 1 at the i-th entry and all zeros elsewhere. Furthermore,

let Ki =

[
0M×M︸︷︷︸

1st

0M×M · · · IM︸︷︷︸
ith

· · · 0M×M︸︷︷︸
(M2+M)th

0M×1
]

be an M × (M2 +M + 1) matrix with IM as the i-th block and
all zeros elsewhere. One can express Ei as

Ei =

M∑
p=1

UpH1/2
i AiH1/2

i Kp. (47)

From (44), (45), (46), and (47), we conclude that constraint
(21) is equivalent to the following LMI constraint

C (θi) + Ti

(̃
hi

)
AiPi

(
H1/2

i

)
+
[
Ti

(̃
hi

)
AiPi

(
H1/2

i

)]H
+

M∑
p=1

UpH1/2
i AiH1/2

i Kp +

 M∑
p=1

UpH1/2
i AiH1/2

i Kp


H

≽ 0. (48)

Similarly, constraint (23) can be equivalently cast in LMI form
as

C
(
θ(t)

i

)
+ Ti
(̃
gt
)

BiPi

(
G1/2

t

)
+
[
Ti
(̃
gt
)

BiPi

(
G1/2

t

)]H
+

M∑
p=1

UpG1/2
t BiG1/2

t Kp +

 M∑
p=1

UpG1/2
t BiG1/2

t Kp


H

≽ 0. (49)

Finally, constraint (27) can be equivalently written as the
following LMI

C (at) + Ti
(̃
gt
)

CPi

(
G1/2

t

)
+
[
Ti
(̃
gt
)

CPi

(
G1/2

t

)]H
+

M∑
p=1

UpG1/2
t CG1/2

t Kp +

 M∑
p=1

UpG1/2
t CG1/2

t Kp


H

≽ 0. (50)

Using (48)-(50), one can rewrite (30) as

min
{Wi},{Vt}∈HM×M ,θi,ϑi,θ

(t)
i ,ϑ

(t)
i ,at ,bt

Tr

 U∑
i=1

Wi +

N∑
t=1

Vt


s. t. (17), (19), (48), ∀i;

(22), (24), (49), ∀i, ∀t;
(26), (28), (50), ∀t,

ϑi ≥ 0, ∀i, bt ≥ 0, ∀t,

ϑ(t)
i ≥ 0, ∀i, ∀t,

Wi ≽ 0, ∀i, Vt ≽ 0, ∀t.

(51)

The same technique as presented in Appendix A can now be
adopted to prove that the optimal beamforming matrices {Wi}
and {Vt} in (51) are always rank-one if the problem is feasible.
In the following, we sketch some of the main steps.

Let L
(
{Wi}, {Vt},Υ

)
be the Lagrangian of (51) where Υ

represents the collection of all Lagrangian multipliers associ-
ated with the constraints in (51). Furthermore, let g

(
Υ
)

be the
dual function of (51), i.e., g

(
Υ
)
= min
{Wi},{Vt}

L
(
{Wi}, {Vt},Υ

)
.

As problem (51) is convex and satisfies Slater’s constraint
qualification [27], the duality gap is zero and the optimal
solution of (51) can be obtained by solving its dual problem.
Let Υ

⋆
be the optimal solution of the dual problem of (51).

Then, the corresponding optimal solution
(
{W⋆

i }, {V⋆
t }
)

to
problem (51) can be obtained as

g(Υ
⋆

) = min
{Wi},{Vt}

L

(
{Wi}, {Vt},Υ

⋆
)
. (52)

After some mathematical manipulations, one can rewrite
(52) in the following form

g(Υ
⋆

) = min
{Wi}

U∑
i=1

Tr
(
ΘiWi

)
+min
{Vt}

N∑
t=1

Tr
(
ΞtVt

)
, (53)

where Θi and Ξt are functions of C (θi), Ti

(̃
hi

)
, Pi

(
H1/2

i

)
,

Up, Kp, C
(
θ(t)

i

)
, Ti
(̃
gt
)
, C (at), and Υ

⋆
. By using a similar

contradiction approach as in the proof of Theorem 1, one can
show that the optimal solution, {W⋆

i }, {V⋆
t }, to problem (53),

which is also the optimal solution to (51), can only involve
rank-one matrices.

References

[1] A. Ghazanfari, H. Tabassum, and E. Hossain, “Ambient RF energy
harvesting in ultra-dense small cell networks performance and trade-
offs,” IEEE Wireless Commun. Mag., vol. 23, no. 2, pp. 38–45, Apr.
2016.

[2] X. Chen, D. W. K. Ng, and H.-H. Chen, “Secrecy wireless informa-
tion and power transfer: Challenges and opportunities,” IEEE Wireless
Commun. Mag., vol. 23, no. 2, pp. 54–61, Apr. 2016.

[3] Q. Liu, K. S. Yildirim, P. Pawelczak, and M. Warnier, “Safe and secure
wireless power transfer networks: Challenges and opportunities in RF-
based systems,” IEEE Commun. Mag., vol. 54, no. 9, pp. 74–79, Sep.
2016.

[4] D. W. K. Ng, E. S. Lo, and R. Schober, “Robust beamforming for
secure communication in systems with wireless information and power
transfer,” IEEE Trans. Wireless Commun., vol. 13, no. 8, pp. 4599–4615,
Aug. 2014.

[5] D. W. K. Ng and R. Schober, “Secure and green SWIPT in distributed
antenna networks with limited backhaul capacity,” IEEE Trans. Wireless
Commun., vol. 14, no. 9, pp. 5082–5097, Sep. 2015.



2473-2400 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TGCN.2017.2706063, IEEE
Transactions on Green Communications and Networking

12

[6] D. W. K. Ng, S. Leng, and R. Schober, “Chapter: Multiple-antenna
and beamforming systems with simultaneous wireless information and
power transfer,” in D. Niyato, E. Hossain, D. I. Kim, V. Bhargava and
L. Shafai, Wireless-Powered Communication Networks: Architectures,
Protocols, and Applications, Cambridge University Press, 2017.

[7] A. A. Nasir, H. D. Tuan, D. T. Ngo, T. Q. Duong, and H. V. Poor,
“Beamforming design for wireless information and power transfer
systems: Receive power-splitting versus transmit time-switching,” IEEE
Trans on Commun., vol. 65, no. 2, pp. 876–889, Feb. 2017.

[8] T. Lv, H. Gao, and S. Yang, “Secrecy transmit beamforming for
heterogeneous networks,” IEEE J. Sel. Areas Commun., vol. 33, no. 6,
pp. 1154–1170, Jun. 2015.

[9] X. Chen, C. Zhong, C. Yuen, and H.-H. Chen, “Multi-antenna relay
aided wireless physical layer security,” IEEE Commun. Mag., vol. 53,
no. 12, pp. 40–46, Dec. 2015.

[10] Q. T. Vien, T. A. Le, H. X. Nguyen, and H. Phan, “A secure network
coding based modify-and-forward scheme for cooperative wireless relay
networks,” in Proc. IEEE 83rd Veh. Technol. Conf. (VTC Spring), May
2016, pp. 1–5.

[11] T. A. Le, Q.-T. Vien, H. X. Nguyen, D. W. K. Ng, and R. Schober,
“Robust optimization with probabilistic constraints for power-efficient
and secure SWIPT,” in Proc. IEEE Global Telecommun. Conf., Dec.
2016, pp. 1–7.

[12] H. Zhang, Y. Huang, C. Li, and L. Yang, “Secure beamforming design
for SWIPT in MISO broadcast channel with confidential messages and
external eavesdroppers,” IEEE Trans. Wireless Commun., vol. 15, no. 11,
pp. 7807–7819, Nov. 2016.

[13] S. Bi, Y. Zeng, and R. Zhang, “Wireless powered communication
networks: an overview,” IEEE Wireless Commun., vol. 23, no. 2, pp.
10–18, Apr. 2016.

[14] F. Rashid-Farrokhi, K. J. R. Liu, and L. Tassiulas, “Transmit beamform-
ing and power control for cellular wireless systems,” IEEE J. Sel. Areas
Commun., vol. 16, no. 8, pp. 1437– 1450, Oct. 1998.

[15] A. Wiesel, Y. C. Eldar, and S. Shamai, “Linear precoding via Conic
optimization for fixed MIMO receivers,” IEEE Trans. Signal Process.,
vol. 54, no. 1, pp. 161– 176, Jan. 2006.

[16] T. A. Le and M. R. Nakhai, “Downlink optimization with interference
pricing and statistical CSI,” IEEE Trans. Commun., vol. 61, no. 6, pp.
2339–2349, Jun 2013.

[17] T. A. Le, S. Nasseri, A. Zarrebin-Esfahani, A. Mills, and M. R.
Nakhai, “Power-efficient downlink transmission in multicell networks
with limited wireless backhaul,” IEEE Wireless Commun. Mag., vol. 18,
no. 5, pp. 82–88, Oct. 2011.

[18] J. Zhang, R. Chen, J. G. Andrews, A. Ghosh, and R. W. Heath, “Network
MIMO with cluster linear precoding,” IEEE Trans. Wireless Commun.,
vol. 8, no. 4, pp. 1910–1921, Apr. 2009.

[19] T. A. Le and K. Navaie, “Downlink beamforming in underlay cognitive
cellular networks,” IEEE Trans. Commun., vol. 62, no. 7, pp. 2212–2223,
Jul. 2014.

[20] L. Liu, R. Zhang, and K. C. Chua, “Secrecy wireless information and
power transfer with MISO beamforming,” IEEE Trans. Signal Process.,
vol. 62, no. 7, pp. 1850–1863, Apr. 2014.

[21] J. Xu, L. Liu, and R. Zhang, “Multiuser MISO beamforming for
simultaneous wireless information and power transfer,” IEEE Trans.
Signal Process., vol. 62, no. 18, pp. 4798–4810, Sep. 2014.

[22] T. A. Le, H. X. Nguyen, Q.-T. Vien, and M. Karamanoglu, “Secure
information transmission and power transfer in cellular networks,” IEEE
Commun. Letters, vol. 19, no. 9, pp. 1532–1535, Sep. 2015.

[23] W. Wu and B. Wang, “Efficient transmission solutions for MIMO wiretap
channels with SWIPT,” IEEE Commun. Letters, vol. 19, no. 9, pp. 1548–
1551, Sep. 2015.

[24] S. Leng, D. W. K. Ng, N. Zlatanov, and R. Schober, “Multi-objective
resource allocation in full-duplex SWIPT systems,” in Proc. IEEE Int.
Conf. Commun. (ICC), May 2016, pp. 1–7.

[25] S. Wang and B. Wang, “Robust secure transmit design in MIMO
channels with simultaneous wireless information and power transfer,”
IEEE Signal Processing Letters, vol. 22, no. 11, pp. 2147–2151, Nov.
2015.

[26] J. Liao, M. R. A. Khandaker, and K. K. Wong, “Robust power-splitting
SWIPT beamforming for broadcast channels,” IEEE Commun. Letters,
vol. 20, no. 1, pp. 181–184, Jan. 2016.

[27] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[28] W. Wu and B. Wang, “Robust downlink beamforming design for
multiuser MISO communication system with SWIPT,” in IEEE Int.
Conf. Commun., Jun. 2015, pp. 4751–4756.

[29] F. Wang, T. Peng, Y. Huang, and X. Wang, “Robust transceiver opti-
mization for power-splitting based downlink MISO SWIPT systems,”
IEEE Signal Process. Letters, vol. 22, no. 9, pp. 1492–1496, Sep. 2015.

[30] F. Zhou, Z. Li, J. Cheng, Q. Li, and J. Si, “Robust an-aided beam-
forming and power splitting design for secure MISO cognitive radio
with SWIPT,” Feb. 2016, [Online]. Available: http://arxiv.org/pdf/1602.
06913v1.pdf.

[31] Z. Chu, H. Xing, M. Johnston, and S. L. Goff, “Secrecy rate op-
timizations for a MISO secrecy channel with multiple multiantenna
eavesdroppers,” IEEE Trans. Wireless Commun., vol. 15, no. 1, pp. 283–
297, Jan. 2016.

[32] M. R. A. Khandaker, K. K. Wong, Y. Zhang, and Z. Zheng, “Proba-
bilistically robust SWIPT for secrecy MISOME systems,” IEEE Trans.
Information Forensics and Security, pp. 1–16, 2016, early access.

[33] I. Bechar, “A Bernstein-type inequality for stochastic processes of
quadratic forms of gaussian variables,” 2009, [Online]. Available: http:
//arxiv.org/pdf/0909.3595.pdf.

[34] A. Ben-tal, L. E. Ghaoui, and A. Nemirovski, Robust Optimization.
Princeton Univ. Press, 2009.

[35] M. C. Grant and S. P. Boyd, The CVX Users’ Guide, Release 2.1., Mar.
2015, [Online]. Available: http://web.cvxr.com/cvx/doc/CVX.pdf.

[36] A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimiza-
tion. Society for Industrial and Applied Mathematics, 2001.

[37] M. Sabbaghian, Y. Kwak, B. Smida, and V. Tarokh, “Near Shannon limit
and low peak to average power ratio turbo block coded OFDM,” IEEE
Trans. Commun., vol. 59, no. 8, pp. 2042–2045, Aug. 2011.

[38] J. Metzner, “Correction of two (or often more) vector symbol errors with
the outer structure of a Hamming single error correcting code,” IEEE
Commun. Letters, vol. 18, no. 12, pp. 2069–2072, Dec. 2014.

[39] O. Besson, S. Bidon, and J. Y. Tourneret, “Covariance matrix estimation
with heterogeneous samples,” IEEE Trans. Signal Process., vol. 56,
no. 3, pp. 909–920, Mar. 2008.

[40] K.-Y. Wang, A. M.-C. So, T.-H. Chang, W.-K. Ma, and C.-Y. Chi,
“Outage constrained robust transmit optimization for multiuser MISO
downlinks: Tractable approximations by conic optimization,” IEEE
Trans. Signal Process., vol. 62, no. 21, pp. 5690–5705, Nov. 2014.

[41] E. Boshkovska, D. W. K. Ng, N. Zlatanov, A. Koelpin, and R. Schober,
“Robust resource allocation for MIMO wireless powered communication
networks based on a non-linear EH model,” IEEE Trans. Commun.,
vol. 65, no. 5, pp. 1984–1999, May 2017.

Tuan Anh Le (S’10, M’13) received his B.Eng.
and M.Sc. degrees both in electronics and telecom-
munications from Hanoi University of Technology,
Hanoi, Vietnam, in 2002 and 2004, respectively,
and his Ph.D. degree in telecommunications research
from King’s College London, The University of
London, UK, in 2012. He was the recipient of
the prestigious Ph.D. scholarship jointly awarded
by the Virtual Center of Excellence in Mobile &
Personal Communications (Mobile VCE) and the
UK Government’s Engineering & Physical Sciences

Research Council (EPSRC). From 2004 to 2006, he worked for the Planning
and Project Management Division, Department of Financial Informatics and
Statistics, Ministry of Finance, Hanoi, Vietnam. From 2009 to 2012, he
was a researcher on the Green Radio project funded by the Core 5 joint
research program of the UK’s EPSRC and the Mobile VCE. From July
2013 to October 2014, he was a Post-Doctoral Research Fellow within the
School of Electronic and Electrical Engineering, University of Leeds, Leeds,
UK. Since November 2014, he has been a Lecturer within the Faculty of
Science and Technology, Middlesex University, London, UK. His current
research interests are cooperative communications, D2D communications,
cognitive radio, energy harvesting and wireless power transfer, physical-
layer security, robust resource allocation and interference management in 5G
cellular networks, and channel estimation for massive MIMO. Dr. Le was
the Co-Chair of the 2017 International Workshop on 5G Networks for Public
Safety and Disaster Management (IWNPD 2017). He regularly reviews papers
for IEEE journals and serves as a technical program committee member for
flagship IEEE conferences and workshops.



2473-2400 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TGCN.2017.2706063, IEEE
Transactions on Green Communications and Networking

13

Quoc-Tuan Vien (S’10, M’12, SM’15) received
his B.Sc. (Hons) degree from Ho Chi Minh City
University of Technology, Vietnam, in 2005; his
M.Sc. degree from Kyung Hee University, South
Korea, in 2009; and his Ph.D. degree from Glas-
gow Caledonian University, U.K., in 2012, all in
telecommunications. From 2005 to 2007, he was
with Fujikura Fiber Optics Vietnam Company, Binh
Duong, Vietnam, as a Production-System Engineer.
From 2010 to 2012, he worked as a Research and
Teaching Assistant with the School of Engineering

and Built Environment, Glasgow Caledonian University. In Spring 2013, he
worked as Postdoctoral Research Assistant with the School of Science and
Technology, Nottingham Trent University, Nottingham, U.K. In June 2013,
he joined Middlesex University, London, U.K., as a Lecturer in Computing
Communications Engineering. He is currently a Senior Lecturer with the
School of Science and Technology at Middlesex University. His research
interests include multiple-input-multiple-output (MIMO), space-time coding,
network coding, physical layer security, energy harvesting, non-orthogonal
multiple access, cross-layer design and optimisation, relay networks, cognitive
radio networks, heterogeneous networks, and cloud radio access networks. Dr.
Vien is a Senior Member of the IEEE, a Member of the IET, and a Fellow of
the HEA. He is an author/co-author of 2 books, 2 book chapters, and more
than 60 publications in major conference proceedings and ISI journals. He
received the Best Paper Award at the IEEE/IFIP 14th International Conference
on Embedded and Ubiquitous Computing (EUC) in 2016. He has been an
Editor of the International Journal of Big Data Security Intelligence since
2015, an Associate Editor of the International Journal of Computing and
Digital Systems since 2015, a Technical Symposium Co-Chair for the IEEE
International Conference on Emerging Technologies and Innovative Business
for the Transformation of Societies (EmergiTech 2016) and the International
Conference on Recent Advances in Signal Processing, Telecommunications
and Computing (SigTelCom 2017, 2018), and a TPC member of more than 80
conferences. He also serves as a Session Chair at IEEE flagship conferences
such as the IEEE WCNC, VTC and ISWCS.

Huan X. Nguyen (M’06, SM’15) received the
B.Sc. degree with the Hanoi University of Science
and Technology, Vietnam, in 2000, and the Ph.D.
degree from the University of New South Wales,
Australia, from 2003 to 2006. He has since been
with several universities in the U.K. He is cur-
rently an Associate Professor of Communication
Networks at the Faculty of Science and Technology,
Middlesex University, London, U.K. His research
interests include PHY security, energy harvesting,
MIMO techniques, communications for critical ap-

plications, network coding, relay communication, cognitive radio, and multi-
carrier systems. He has published more than 90 research papers, mainly
in the IEEE journals and conferences. He received a Newton Fund/British
Council Institutional Links grant (2016-2018) for Disaster Communication
and Management Systems using 5G Networks. He was the Co-Chair of the
2017 International Workshop on 5G Networks for Public Safety and Disaster
Management (IWNPD 2017). Prof. Nguyen is a Senior Member of the IEEE.
He is currently serving as the Editor of the KSII Transactions on Internet and
Information Systems.

Derrick Wing Kwan Ng (S’06, M’12) received
the bachelor degree with first class honors and the
Master of Philosophy (M.Phil.) degree in electronic
engineering from the Hong Kong University of
Science and Technology (HKUST) in 2006 and
2008, respectively. He received his Ph.D. degree
from the University of British Columbia (UBC) in
2012. In the summer of 2011 and spring of 2012,
he was a visiting scholar at the Centre Tecnològic
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