131 research outputs found

    Genital Chlamydia trachomatis: understanding the roles of innate and adaptive immunity in vaccine research.

    Get PDF
    Chlamydia trachomatis is the leading cause of bacterial sexually transmitted disease worldwide, and despite significant advances in chlamydial research, a prophylactic vaccine has yet to be developed. This Gram-negative obligate intracellular bacterium, which often causes asymptomatic infection, may cause pelvic inflammatory disease (PID), ectopic pregnancies, scarring of the fallopian tubes, miscarriage, and infertility when left untreated. In the genital tract, Chlamydia trachomatis infects primarily epithelial cells and requires Th1 immunity for optimal clearance. This review first focuses on the immune cells important in a chlamydial infection. Second, we summarize the research and challenges associated with developing a chlamydial vaccine that elicits a protective Th1-mediated immune response without inducing adverse immunopathologies

    Targeting endothelial connexin40 inhibits tumor growth by reducing angiogenesis and improving vessel perfusion.

    Get PDF
    Endothelial connexin40 (Cx40) contributes to regulate the structure and function of vessels. We have examined whether the protein also modulates the altered growth of vessels in tumor models established in control mice (WT), mice lacking Cx40 (Cx40-/-), and mice expressing the protein solely in endothelial cells (Tie2-Cx40). Tumoral angiogenesis and growth were reduced, whereas vessel perfusion, smooth muscle cell (SMC) coverage and animal survival were increased in Cx40-/- but not Tie2-Cx40 mice, revealing a critical involvement of endothelial Cx40 in transformed tissues independently of the hypertensive status of Cx40-/- mice. As a result, Cx40-/- mice bearing tumors survived significantly longer than corresponding controls, including after a cytotoxic administration. Comparable observations were made in WT mice injected with a peptide targeting Cx40, supporting the Cx40 involvement. This involvement was further confirmed in the absence of Cx40 or by peptide-inhibition of this connexin in aorta-sprouting, matrigel plug and SMC migration assays, and associated with a decreased expression of the phosphorylated form of endothelial nitric oxide synthase. The data identify Cx40 as a potential novel target in cancer treatment

    Tumor-Microenvironment Characterization of the MB49 Non-Muscle-Invasive Bladder-Cancer Orthotopic Model towards New Therapeutic Strategies.

    Get PDF
    Bacillus Calmette-Guérin (BCG) instillations for the treatment of non-muscle-invasive bladder cancer patients can result in significant side effects and treatment failure. Immune checkpoint blockade and/or decreasing tumor-infiltrating myeloid suppressor cells may be alternative or complementary treatments. Here, we have characterized immune cell infiltration and chemoattractant molecules in mouse orthotopic MB49 bladder tumors. Our data show a 100-fold increase in CD45 <sup>+</sup> immune cells from day 5 to day 9 tumors including T cells and mainly myeloid cells. Both monocytic myeloid-derived suppressor-cells (M-MDSC) and polymorphonuclear (PMN)-MDSC were strongly increased in day 9 tumors, with PMN-MDSC representing ca. 70% of the myeloid cells in day 12 tumors, while tumor associated macrophages (TAM) were only modestly increased. The kinetic of PD-L1 tumor expression correlated with published data from patients with PD-L1 expressing bladder tumors and with efficacy of anti-PD-1 treatment, further validating the orthotopic MB49 bladder-tumor model as suitable for designing novel therapeutic strategies. Comparison of chemoattractants expression during MB49 bladder tumors grow highlighted CCL8 and CCL12 (CCR2-ligands), CCL9 and CCL6 (CCR-1-ligands), CXCL2 and CXCL5 (CXCR2-ligands), CXCL12 (CXCR4-ligand) and antagonist of C5/C5a as potential targets to decrease myeloid suppressive cells. Data obtained with a single CCR2 inhibitor however showed that the complex chemokine crosstalk would require targeting multiple chemokines for anti-tumor efficacy

    Immunogenic Human Papillomavirus Pseudovirus-Mediated Suicide-Gene Therapy for Bladder Cancer.

    Get PDF
    Bladder cancer is the second most common urological malignancy in the world. In 70% of cases it is initially diagnosed as non-muscle-invasive bladder cancer (NMIBC) and it is amenable to local treatments, with intravesical (IVES) Bacillus-Calmette-Guerin (BCG) immunotherapy being routinely used after transurethral resection of the lesion. However, this treatment is associated with significant side-effects and treatment failures, highlighting the necessity of novel strategies. One potent approach is the suicide-gene mediated therapy/prodrug combination, provided tumor-specificity can be ensured and anti-tumor immune responses induced. Using the mouse syngeneic orthotopic MB49-bladder tumor model, here we show that IVES human papillomavirus non-replicative pseudovirions (PsV) can pseudoinfect tumors with a ten-fold higher efficacy than normal bladders. In addition, PsV carrying the suicide-gene herpes-simplex virus thymidine kinase (PsV-TK) combined to Ganciclovir (GCV) led to immunogenic cell-death of tumor cells in vitro and to MB49-specific CD8 T-cells in vivo. This was associated with reduction in bladder-tumor growth and increased mice survival. Altogether, our data show that IVES PsV-TK/GCV may be a promising alternative or combinatory treatment for NMIBC

    Local Salmonella immunostimulation recruits vaccine-specific CD8 T cells and increases regression of bladder tumor.

    Get PDF
    The efficacy of antitumoral responses can be increased using combinatorial vaccine strategies. We recently showed that vaccination could be optimized by local administration of diverse molecular or bacterial agents to target and augment antitumoral CD8 T cells in the genital mucosa (GM) and increase regression of cervical cancer in an animal model. Non muscle-invasive bladder cancer is another disease that is easily amenable to local therapies. In contrast to data obtained in the GM, in this study we show that intravesical (IVES) instillation of synthetic toll-like receptor (TLR) agonists only modestly induced recruitment of CD8 T cells to the bladder. However, IVES administration of Ty21a, a live bacterial vaccine against typhoid fever, was much more effective and increased the number of total and vaccine-specific CD8 T cells in the bladder approximately 10 fold. Comparison of chemokines induced in the bladder by either CpG (a TLR-9 agonist) or Ty21a highlighted the preferential increase in complement component 5a, CXCL5, CXCL2, CCL8, and CCL5 by Ty21a, suggesting their involvement in the attraction of T cells to the bladder. IVES treatment with Ty21a after vaccination also significantly increased tumor regression compared to vaccination alone, resulting in 90% survival in an orthotopic murine model of bladder cancer expressing a prototype tumor antigen. Our data demonstrate that combining vaccination with local immunostimulation may be an effective treatment strategy for different types of cancer and also highlight the great potential of the Ty21a vaccine, which is routinely used worldwide, in such combinatorial therapies

    Intravesical Ty21a vaccine promotes dendritic cells and T cell-mediated tumor regression in the MB49 bladder cancer model

    Get PDF
    Preclinical data shows that intravesical instillation of Ty21a/Vivotif\uae, a commercial vaccine against typhoid fever, is an effective alternative option to standard Bacillus-Calmette-Gu\ue9rin (BCG) immunotherapy for nonmuscle-invasive bladder cancer (NMIBC). Here we characterized the inflammatory effects of Ty21a on the bladder and investigated the immune mechanisms underlying tumor-regression towards the use of this bacterial vaccine in NMIBC patients. MB49 bladder tumor-bearing mice had significantly improved survival after intravesical instillations of Ty21a doses of 106 to 108 colony-forming units. By immunohistochemistry and morphology, both BCG and Ty21a instillations were associated with bladder inflammation, which was decreased with the use of low, but effective, doses of Ty21a. Flow cytometry analysis showed a significant infiltration of T cells, natural killer (NK) cells, and myeloid cells, compared with controls, after a single dose of Ty21a, whereas this was only observed after multiple doses of BCG. The induced myeloid cells were predominantly neutrophils and Ly6C+CD103+ dendritic cells (DC), the latter being significantly more numerous after instillation of Ty21a than BCG. Ex vivo infection of human leukocytes with Ty21a, but not BCG, similarly significantly increased DC frequency. CD4+ and CD8+ T cells, but not NK cells nor neutrophils, were required for effective Ty21a bladder tumor responses. Thus, the generation of antitumor adaptive immunity was identified as a key process underlying Ty21a-mediated treatment efficacy. Altogether, these results demonstrate mechanisms of intravesical Ty21a therapy and suggest its potential as a safe and effective treatment for NMIBC patients

    Specific antibody levels at the cervix during the menstrual cycle of women vaccinated with human papillomavirus 16 virus-like particles

    Get PDF
    BACKGROUND: In early-phase trials, a human papillomavirus 16 (HPV16) virus-like particle (VLP) vaccine has been shown to be well tolerated, immunogenic, and protective against HPV16 in women, most of whom were taking oral contraceptives. Previous studies have not determined whether HPV immunization results in specific antibody levels in the human genital tract or whether these levels might vary during contraceptive or ovulatory cycles. Therefore, we determined the levels of total and specific antibodies in the cervical secretions of women who had been immunized with HPV16 VLPs and examined the influence of the menstrual cycle and oral contraceptive use on these levels. METHODS: Two groups of women were immunized, seven who were taking oral contraceptives and 11 who were ovulating. After seroconversion, serum and cervical secretions were collected twice weekly for 5 weeks. Total immunoglobulins (IgG and IgA) and vaccine-specific IgGs were determined by enzyme-linked immunosorbent assay. Nonparametric statistical analyses were used to determine the statistical significance of differences in IgG levels between groups, and correlations between serum- and cervical-specific IgG levels were determined by the Spearman correlation coefficient. RESULTS: All participants developed detectable titers of anti-HPV16 VLP IgGs in their cervical secretions after immunization. The cervical titers of specific IgG and total IgGs and IgAs among participants in the contraceptive group were relatively constant throughout the contraceptive cycle. In contrast, the cervical titers of specific IgG and total IgGs and IgAs among participants in the ovulatory group varied during the menstrual cycle, being highest during the proliferative phase, decreasing approximately ninefold around ovulation, and increasing approximately threefold during the luteal phase. Serum- and cervical-specific IgG levels were correlated (r =.86) in women in the contraceptive group but not in women in the ovulatory group (r =.27). CONCLUSIONS: The relatively high titer of anti-HPV16 antibodies at the cervix is promising in terms of vaccine efficacy; however, the decrease in antibody titer around ovulation raises the possibility that the HPV16 VLP vaccine might be less effective during the peri-ovulatory phase

    Novel intravesical bacterial immunotherapy induces rejection of BCG-unresponsive established bladder tumors

    Get PDF
    Background Intravesical BCG is the gold-standard therapy for non-muscle invasive bladder cancer (NMIBC); however, it still fails in a significant proportion of patients, so improved treatment options are urgently needed. Methods Here, we compared BCG antitumoral efficacy with another live attenuated mycobacteria, MTBVAC, in an orthotopic mouse model of bladder cancer (BC). We aimed to identify both bacterial and host immunological factors to understand the antitumoral mechanisms behind effective bacterial immunotherapy for BC. Results We found that the expression of the BCG-absent proteins ESAT6/CFP10 by MTBVAC was determinant in mediating bladder colonization by the bacteria, which correlated with augmented antitumoral efficacy. We further analyzed the mechanism of action of bacterial immunotherapy and found that it critically relied on the adaptive cytotoxic response. MTBVAC enhanced both tumor antigen-specific CD4 + and CD8 + T-cell responses, in a process dependent on stimulation of type 1 conventional dendritic cells. Importantly, improved intravesical bacterial immunotherapy using MBTVAC induced eradication of fully established bladder tumors, both as a monotherapy and specially in combination with the immune checkpoint inhibitor antiprogrammed cell death ligand 1 (anti PD-L1). Conclusion These results contribute to the understanding of the mechanisms behind successful bacterial immunotherapy against BC and characterize a novel therapeutic approach for BCG-unresponsive NMIBC cases. © Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ

    Immunoregulation of Dendritic Cell Subsets by Inhibitory Receptors in Urothelial Cancer.

    Get PDF
    Blockade of inhibitory receptors (IRs) overexpressed by T cells can activate antitumor immune responses, resulting in the most promising therapeutic approaches, particularly in bladder cancer, currently able to extend patient survival. Thanks to their ability to cross-present antigens to T cells, dendritic cells (DCs) are an immune cell population that plays a central role in the generation of effective antitumor T-cell responses. While IR function and expression have been investigated in T cells, very few data are available for DCs. Therefore, we analyzed whether DCs express IRs that can decrease their functions. To this end, we investigated several IRs (PD-1, CTLA-4, BTLA, TIM-3, and CD160) in circulating CD1c javax.xml.bind.JAXBElement@4f1331d4 DCs, CD141 javax.xml.bind.JAXBElement@68e4feef DCs, and plasmacytoid DCs from healthy donors and patients with urothelial cancer (UCa). Different DC subsets expressed BTLA and TIM-3 but not other IRs. More importantly, BTLA and TIM-3 were significantly upregulated in DCs from blood of UCa patients. Locally, bladder tumor-infiltrating DCs also overexpressed BTLA and TIM-3 compared to DCs from paired nontumoral tissue. Finally, in vitro functional experiments showed that ligand-mediated engagement of BTLA and TIM-3 receptors significantly reduced the secretion of effector cytokines by DC subpopulations. Our findings demonstrate that UCa induces local and systemic overexpression of BTLA and TIM-3 by DCs that may result in their functional inhibition, highlighting these receptors as potential targets for UCa treatment. We investigated the expression and function of a panel of inhibitory receptors in dendritic cells (DCs), an immune cell subpopulation critical in initiation of protective immune responses, among patients with urothelial carcinoma. We found high expression of BTLA and TIM-3 by blood and tumor DCs, which could potentially mediate decreased DC function. The results suggest that BTLA and TIM-3 might be new targets for urothelial carcinoma treatment

    Bivalent therapeutic vaccine against HPV16/18 genotypes consisting of a fusion protein between the extra domain A from human fibronectin and HPV16/18 E7 viral antigens.

    Get PDF
    In vivo targeting of human papillomavirus (HPV) derived antigens to dendritic cells might constitute an efficient immunotherapeutic strategy against cervical cancer. In previous works, we have shown that the extra domain A from murine fibronectin (mEDA) can be used to target antigens to toll-like receptor 4 (TLR4) expressing dendritic cells and induce strong antigen-specific immune responses. In the present study, we have produced a bivalent therapeutic vaccine candidate consisting of the human EDA (hEDA) fused to E7 proteins from HPV16 and HPV18 (hEDA-HPVE7-16/18) and evaluate its potential as a therapeutic vaccine against cervical cancer. Recombinant fusion proteins containing HPV E7 proteins from HPV16 and HPV18 virus subtypes fused to hEDA were produced and tested in vitro on their capacity to bind TLR4 and induce the production of tumor necrosis factor-α or interleukin (IL)-12 by human monocytes and dendritic cells. The immunogenicity and potential therapeutic activity of the vaccine in combination with cisplatin or with the TLR3 agonist molecules polyinosinic-polycytidylic acid (Poly IC) or Poly ICLC was evaluated in mice bearing subcutaneous or genital orthotopic HPV16 TC-1 tumors. hEDA-HPVE7-16/18 prototype vaccine binds human TLR4 and stimulate TLR4-dependent signaling pathways and IL-12 production by human monocyte-derived dendritic cell. Vaccination with hEDA-HPVE7-16/18 induced strong HPVE7-specific Cytotoxic T lymphocyte (CTL) responses and eliminated established tumors in the TC-1-based tumor model. The antitumor efficacy was significantly improved by combining the fusion protein with cisplatin or with the TLR-3 ligand Poly IC and especially with the stabilized analog Poly ICLC. Moreover, hEDA-HPVE7-16/18+Poly ICLC induced full tumor regression in 100% of mice bearing orthotopic genital HPV tumors. Our results suggest that this therapeutic vaccine formulation may be an effective treatment for cervical tumors that do not respond to current therapies
    corecore