220 research outputs found

    Measurement of two-halo neutron transfer reaction p(11^{11}Li,9^{9}Li)t at 3AA MeV

    Get PDF
    The p(\nuc{11}{Li},\nuc{9}{Li})t reaction has been studied for the first time at an incident energy of 3AA MeV delivered by the new ISAC-2 facility at TRIUMF. An active target detector MAYA, build at GANIL, was used for the measurement. The differential cross sectionshave been determined for transitions to the \nuc{9}{Li} ground andthe first excited states in a wide range of scattering angles. Multistep transfer calculations using different \nuc{11}{Li} model wave functions, shows that wave functions with strong correlations between the halo neutrons are the most successful in reproducing the observation.Comment: 6 pages, 3 figures, submitted to Physical Review Letter

    Carbon Isotopes Near Drip Lines in the Relativistic Mean-Field Theory

    Get PDF
    We have investigated the ground-state properties of carbon isotopes in the framework of the relativistic mean-field (RMF) theory. RMF calculations have been performed with the non-linear scalar self-coupling of the σ\sigma meson using an axially symmetric deformed configuration. We have also introduced the vector self-coupling of the ω\omega meson for the deformed mean-field calculations. The results show that the RMF predictions on radii and deformations are in good agreement with the available experimental data. It is shown that several carbon isotopes possess a highly deformed shape akin to a superdeformation. The single-particle structure of nuclei away from the stability line has been discussed with a view to understand the properties near the neutron drip line. Predictions of properties of carbon isotopes away from the stability line are made.Comment: Revtex, 29 pages, 11 postscript figures include

    Lifetimes of states in 19Ne above the 15 O + alpha breakup threshold

    Full text link
    The 15O(alpha,gamma)19Ne reaction plays a role in the ignition of Type I x-ray bursts on accreting neutron stars. The lifetimes of states in 19Ne above the 15O + alpha threshold of 3.53 MeV are important inputs to calculations of the astrophysical reaction rate. These levels in 19Ne were populated in the 3He(20Ne,alpha)19Ne reaction at a 20Ne beam energy of 34 MeV. The lifetimes of six states above the threshold were measured with the Doppler shift attenuation method (DSAM). The present measurements agree with previous determinations of the lifetimes of these states and in some cases are considerably more precise

    Lifetime of 19Ne*(4.03 MeV)

    Get PDF
    The Doppler-shift attenuation method was applied to measure the lifetime of the 4.03 MeV state in 19Ne. Utilizing a 3He-implanted Au foil as a target, the state was populated using the 20Ne(3He,alpha)19Ne reaction in inverse kinematics at a 20Ne beam energy of 34 MeV. De-excitation gamma rays were detected in coincidence with alpha particles. At the 1 sigma level, the lifetime was determined to be 11 +4, -3 fs and at the 95.45% confidence level the lifetime is 11 +8, -7 fs.Comment: 6 pages, submitted to Phys. Rev.

    HAEMATOLOGICAL INDICES IN OSTEOFLUOROSIS IN A TINNY VILLAGE

    Get PDF
    A case study was undertaken among individuals residing in a Fluoride affected area. A total of 50 patients of both sexes in the age group of 02- 80 years were selected from a village Thungapeta of Srikakulam district of AP state, where the levels of Fluoride in drinking water varied from 2.9 to 3.5 mg/L. The patients of Dental fluorosis, skeletal fluorosis were examined for Hematological indices and Biochemical evaluation of Creatine kinase and ∝ Amylase. 72% patients are suffering from Aniscocytosis. 64% are suffering from Eosinophilia, 56% from lymphocytopenia. All parameters revealed that fluoride causes hypochromic Anemia. The present study elaborately deals with increased RDW values and suspected heart problems, liver problems and intestinal disorders. The activity of CK, ∝Amylase showed significantly rise and they alter skeletal and hepatic function. &nbsp

    Bioadsorption of chromium resistant enterococcus casseliflavus isolated from tannery effluents.

    Get PDF
    Bioadsorption, bioaccumulation and enzymatic reduction are the processes by which the microorganisms interact with the toxic metals, enabling their removal or recovery. In the present study, a bacterial strain was isolated from tannery effluent and identified as Enterococcus casseliflavus. It showed a high level resistance of 800 µg/ml chromium. The minimal inhibitory concentration of chromium was found to be 512 µg/ml of potassium dichromate in Nutrient broth medium. The chromium adsorption was more significant by the live cells than killed cells at different time intervals. It was observed that, the inoculation of Enterococcus casseliflavus reduced the BOD and COD values of tannery effluent. The maximum adsorption of chromium was at a temperature of 35ºC to 45ºC and at a pH of 7.0 to 7.

    Bioadsorption of Chromium Resistant Enterococcus casseliflavus Isolated from Tannery Effluents

    Get PDF
    AbstractBioadsorption, bioaccumulation and enzymatic reduction are the processes by which the microorganisms interact with the toxic metals, enabling their removal or recovery. In the present study, a bacterial strain was isolated from tannery effluent and identified as Enterococcus casseliflavus. It showed a high level resistance of 800 µg/ml chromium. The minimal inhibitory concentration of chromium was found to be 512 µg/ml of potassium dichromate in Nutrient broth medium. The chromium adsorption was more significant by the live cells than killed cells at different time intervals. It was observed that, the inoculation of Enterococcus casseliflavus reduced the BOD and COD values of tannery effluent. The maximum adsorption of chromium was at a temperature of 35ºC to 45ºC and at a pH of 7.0 to 7.5

    Shell Effects in Nuclei with Vector Self-Coupling of Omega Meson in Relativistic Hartree-Bogoliubov Theory

    Full text link
    Shell effects in nuclei about the stability line are investigated within the framework of the Relativistic Hartree-Bogoliubov (RHB) theory with self-consistent finite-range pairing. Using 2-neutron separation energies of Ni and Sn isotopes, the role of σ\sigma- and ω\omega-meson couplings on the shell effects in nuclei is examined. It is observed that the existing successful nuclear forces (Lagrangian parameter sets) based upon the nonlinear scalar coupling of σ\sigma-meson exhibit shell effects which are stronger than suggested by the experimental data. We have introduced nonlinear vector self-coupling of ω\omega-meson in the RHB theory. It is shown that the inclusion of the vector self-coupling of ω\omega-meson in addition to the nonlinear scalar coupling of σ\sigma-meson provides a good agreement with the experimental data on shell effects in nuclei about the stability line. A comparison of the shell effects in the RHB theory is made with the Hartree-Fock Bogoliubov approach using the Skyrme force SkP. It is shown that the oft-discussed shell quenching with SkP is not consistent with the available experimental data.Comment: 34 pages latex, 18 ps figures, replaced with minor corrections in some figures, accepted for publication in Phys. Rev.

    Quorum sensing - a promising tool for degradation of industrial waste containing persistent organic pollutants

    Get PDF
    Restoring an environment contaminated with persistent organic pollutants (POPs) is highly challenging. Biodegradation by biofilm-forming bacteria through quorum sensing (QS) is a promising treatment process to remove these pollutants and promotes eco-restoration. QS plays an important role in biofilm formation, solubilization, and biotransformation of pollutants. QS is a density-based communication between microbial cells via signalling molecules, which coordinates specific characters and helps bacteria to acclimatize against stress conditions. Genetic diversification of a biofilm offers excellent opportunities for horizontal gene transfer, improves resistance against stress, and provides a suitable environment for the metabolism of POPs. To develop this technology in industrial scale, it is important to understand the fundamentals and ubiquitous nature of QS bacteria and appreciate the role of QS in the degradation of POPs. Currently, there are knowledge gaps regarding the environmental niche, abundance, and population of QS bacteria in wastewater treatment systems. This review aims to present up-to-date and state-of-the-art information on the roles of QS and QS-mediated strategies in industrial waste treatment including biological treatments (such as activated sludge), highlighting their potentials using examples from the pulp and paper mill industry, hydrocarbon remediation and phytoremediation. The information will help to provide a throughout understanding of the potential of QS to degrade POPs and advance the use of this technology. Current knowledge of QS strategies is limited to laboratory studies, full-scale applications remain challenging and more research is need to explore QS gene expression and test in full-scale reactors for wastewater treatment
    corecore