11,607 research outputs found

    Dust photophoretic transport around a T Tauri star: Implications for comets composition

    Get PDF
    There is a growing body of evidences for the presence of crystalline material in comets. These crystals are believed to have been annealed in the inner part of the proto-solar nebula, while comets should have been formed in the outer regions. Several transport processes have been proposed to reconcile these two facts; among them a migration driven by photophoresis. The primarily goal of this work is to assess whether disk irradiation by a Pre-Main Sequence star would influence the photophoretic transport. To do so, we have implemented an evolving 1+1D model of an accretion disk, including advanced numerical techniques, undergoing a time-dependent irradiation, consistent with the evolution of the proto-Sun along the Pre-Main Sequence. The photophoresis is described using a formalism introduced in several previous works. Adopting the opacity prescription used in these former studies, we find that the disk irradiation enhances the photophoretic transport: the assumption of a disk central hole of several astronomical units in radius is no longer strictly required, whereas the need for an ad hoc introduction of photoevaporation is reduced. However, we show that a residual trail of small particles could annihilate the photophoretic driven transport via their effect on the opacity. We have also confirmed that the thermal conductivity of transported aggregates is a crucial parameter which could limit or even suppress the photophoretic migration and generate several segregation effects

    Imaginary Time Correlations and the phaseless Auxiliary Field Quantum Monte Carlo

    Full text link
    The phaseless Auxiliary Field Quantum Monte Carlo method provides a well established approximation scheme for accurate calculations of ground state energies of many-fermions systems. Here we apply the method to the calculation of imaginary time correlation functions. We give a detailed description of the technique and we test the quality of the results for static and dynamic properties against exact values for small systems.Comment: 13 pages, 6 figures; submitted to J. Chem. Phy

    The genus of the configuration spaces for Artin groups of affine type

    Full text link
    Let (W,S)(W,S) be a Coxeter system, SS finite, and let GWG_{W} be the associated Artin group. One has configuration spaces Y, YW,Y,\ Y_{W}, where GW=π1(YW),G_{W}=\pi_1(Y_{W}), and a natural WW-covering fW: YYW.f_{W}:\ Y\to Y_{W}. The Schwarz genus g(fW)g(f_{W}) is a natural topological invariant to consider. In this paper we generalize this result by computing the Schwarz genus for a class of Artin groups, which includes the affine-type Artin groups. Let K=K(W,S)K=K(W,S) be the simplicial scheme of all subsets JSJ\subset S such that the parabolic group WJ W_J is finite. We introduce the class of groups for which dim(K)dim(K) equals the homological dimension of K,K, and we show that g(fW)g(f_{W}) is always the maximum possible for such class of groups. For affine Artin groups, such maximum reduces to the rank of the group. In general, it is given by dim(XW)+1,dim(X_{W})+1, where XWYW X_{ W}\subset Y_{ W} is a well-known CWCW-complex which has the same homotopy type as YW. Y_{ W}.Comment: To appear in Atti Accad. Naz. Lincei Rend. Lincei Mat. App

    Dynamic structure factor for 3He in two-dimensions

    Full text link
    Recent neutron scattering experiments on 3He films have observed a zero-sound mode, its dispersion relation and its merging with -and possibly emerging from- the particle-hole continuum. Here we address the study of the excitations in the system via quantum Monte Carlo methods: we suggest a practical scheme to calculate imaginary time correlation functions for moderate-size fermionic systems. Combined with an efficient method for analytic continuation, this scheme affords an extremely convincing description of the experimental findings.Comment: 5 pages, 5 figure

    C/O white dwarfs of very low mass: 0.33-0.5 Mo

    Full text link
    The standard lower limit for the mass of white dwarfs (WDs) with a C/O core is roughly 0.5 Mo. In the present work we investigated the possibility to form C/O WDs with mass as low as 0.33 Mo. Both the pre-WD and the cooling evolution of such nonstandard models will be described.Comment: Submitted to the "Proceedings of the 16th European White Dwarf Workshop" (to be published JPCS). 7 pages including 13 figure

    Local-spin-density functional for multideterminant density functional theory

    Full text link
    Based on exact limits and quantum Monte Carlo simulations, we obtain, at any density and spin polarization, an accurate estimate for the energy of a modified homogeneous electron gas where electrons repel each other only with a long-range coulombic tail. This allows us to construct an analytic local-spin-density exchange-correlation functional appropriate to new, multideterminantal versions of the density functional theory, where quantum chemistry and approximate exchange-correlation functionals are combined to optimally describe both long- and short-range electron correlations.Comment: revised version, ti appear in PR

    Magnetism in Nb(1-y)Fe(2+y) - composition and magnetic field dependence

    Full text link
    We present a systematic study of transport and thermodynamic properties of the Laves phase system Nb1y_{1-y}Fe2+y_{2+y}. Our measurements confirm that Fe-rich samples, as well as those rich in Nb (for y0.02\mid y\mid\geq 0.02), show bulk ferromagnetism at low temperature. For stoichiometric NbFe2_2, on the other hand, magnetization, magnetic susceptibility and magnetoresistance results point towards spin-density wave (SDW) order, possibly helical, with a small ordering wavevector Q0.05Q \sim 0.05 \AA1^{-1}. Our results suggest that on approaching the stoichiometric composition from the iron-rich side, ferromagnetism changes into long-wavelength SDW order. In this scenario, QQ changes continuously from 0 to small, finite values at a Lifshitz point in the phase diagram, which is located near y=+0.02y=+0.02. Further reducing the Fe content suppresses the SDW transition temperature, which extrapolates to zero at y0.015y\approx -0.015. Around this Fe content magnetic fluctuations dominate the temperature dependence of the resistivity and of the heat capacity which deviate from their conventional Fermi liquid forms, inferring the presence of a quantum critical point. Because the critical point is located between the SDW phase associated with stoichiometric NbFe2_2 and the ferromagnetic order which reemerges for very Nb-rich NbFe2_2, the observed temperature dependences could be attributed both to proximity to SDW order or to ferromagnetism.Comment: 13 pages, 20 figure

    Analytical expressions for the charge-charge local-field factor and the exchange-correlation kernel of a two-dimensional electron gas

    Full text link
    We present an analytical expression for the static many-body local field factor G+(q)G_{+}(q) of a homogeneous two-dimensional electron gas, which reproduces Diffusion Monte Carlo data and embodies the exact asymptotic behaviors at both small and large wave number qq. This allows us to also provide a closed-form expression for the exchange and correlation kernel Kxc(r)K_{xc}(r), which represents a key input for density functional studies of inhomogeneous systems.Comment: 5 pages, 3 figure
    corecore