11,607 research outputs found
Dust photophoretic transport around a T Tauri star: Implications for comets composition
There is a growing body of evidences for the presence of crystalline material
in comets. These crystals are believed to have been annealed in the inner part
of the proto-solar nebula, while comets should have been formed in the outer
regions. Several transport processes have been proposed to reconcile these two
facts; among them a migration driven by photophoresis. The primarily goal of
this work is to assess whether disk irradiation by a Pre-Main Sequence star
would influence the photophoretic transport. To do so, we have implemented an
evolving 1+1D model of an accretion disk, including advanced numerical
techniques, undergoing a time-dependent irradiation, consistent with the
evolution of the proto-Sun along the Pre-Main Sequence. The photophoresis is
described using a formalism introduced in several previous works. Adopting the
opacity prescription used in these former studies, we find that the disk
irradiation enhances the photophoretic transport: the assumption of a disk
central hole of several astronomical units in radius is no longer strictly
required, whereas the need for an ad hoc introduction of photoevaporation is
reduced. However, we show that a residual trail of small particles could
annihilate the photophoretic driven transport via their effect on the opacity.
We have also confirmed that the thermal conductivity of transported aggregates
is a crucial parameter which could limit or even suppress the photophoretic
migration and generate several segregation effects
Imaginary Time Correlations and the phaseless Auxiliary Field Quantum Monte Carlo
The phaseless Auxiliary Field Quantum Monte Carlo method provides a well
established approximation scheme for accurate calculations of ground state
energies of many-fermions systems. Here we apply the method to the calculation
of imaginary time correlation functions. We give a detailed description of the
technique and we test the quality of the results for static and dynamic
properties against exact values for small systems.Comment: 13 pages, 6 figures; submitted to J. Chem. Phy
The genus of the configuration spaces for Artin groups of affine type
Let be a Coxeter system, finite, and let be the
associated Artin group. One has configuration spaces where
and a natural -covering The
Schwarz genus is a natural topological invariant to consider. In
this paper we generalize this result by computing the Schwarz genus for a class
of Artin groups, which includes the affine-type Artin groups. Let be
the simplicial scheme of all subsets such that the parabolic group
is finite. We introduce the class of groups for which equals
the homological dimension of and we show that is always the
maximum possible for such class of groups. For affine Artin groups, such
maximum reduces to the rank of the group. In general, it is given by
where is a well-known -complex
which has the same homotopy type as Comment: To appear in Atti Accad. Naz. Lincei Rend. Lincei Mat. App
Dynamic structure factor for 3He in two-dimensions
Recent neutron scattering experiments on 3He films have observed a zero-sound
mode, its dispersion relation and its merging with -and possibly emerging from-
the particle-hole continuum. Here we address the study of the excitations in
the system via quantum Monte Carlo methods: we suggest a practical scheme to
calculate imaginary time correlation functions for moderate-size fermionic
systems. Combined with an efficient method for analytic continuation, this
scheme affords an extremely convincing description of the experimental
findings.Comment: 5 pages, 5 figure
C/O white dwarfs of very low mass: 0.33-0.5 Mo
The standard lower limit for the mass of white dwarfs (WDs) with a C/O core
is roughly 0.5 Mo. In the present work we investigated the possibility to form
C/O WDs with mass as low as 0.33 Mo. Both the pre-WD and the cooling evolution
of such nonstandard models will be described.Comment: Submitted to the "Proceedings of the 16th European White Dwarf
Workshop" (to be published JPCS). 7 pages including 13 figure
Local-spin-density functional for multideterminant density functional theory
Based on exact limits and quantum Monte Carlo simulations, we obtain, at any
density and spin polarization, an accurate estimate for the energy of a
modified homogeneous electron gas where electrons repel each other only with a
long-range coulombic tail. This allows us to construct an analytic
local-spin-density exchange-correlation functional appropriate to new,
multideterminantal versions of the density functional theory, where quantum
chemistry and approximate exchange-correlation functionals are combined to
optimally describe both long- and short-range electron correlations.Comment: revised version, ti appear in PR
Magnetism in Nb(1-y)Fe(2+y) - composition and magnetic field dependence
We present a systematic study of transport and thermodynamic properties of
the Laves phase system NbFe. Our measurements confirm that
Fe-rich samples, as well as those rich in Nb (for ), show
bulk ferromagnetism at low temperature. For stoichiometric NbFe, on the
other hand, magnetization, magnetic susceptibility and magnetoresistance
results point towards spin-density wave (SDW) order, possibly helical, with a
small ordering wavevector \AA. Our results suggest that on
approaching the stoichiometric composition from the iron-rich side,
ferromagnetism changes into long-wavelength SDW order. In this scenario,
changes continuously from 0 to small, finite values at a Lifshitz point in the
phase diagram, which is located near . Further reducing the Fe content
suppresses the SDW transition temperature, which extrapolates to zero at
. Around this Fe content magnetic fluctuations dominate the
temperature dependence of the resistivity and of the heat capacity which
deviate from their conventional Fermi liquid forms, inferring the presence of a
quantum critical point. Because the critical point is located between the SDW
phase associated with stoichiometric NbFe and the ferromagnetic order which
reemerges for very Nb-rich NbFe, the observed temperature dependences could
be attributed both to proximity to SDW order or to ferromagnetism.Comment: 13 pages, 20 figure
Analytical expressions for the charge-charge local-field factor and the exchange-correlation kernel of a two-dimensional electron gas
We present an analytical expression for the static many-body local field
factor of a homogeneous two-dimensional electron gas, which
reproduces Diffusion Monte Carlo data and embodies the exact asymptotic
behaviors at both small and large wave number . This allows us to also
provide a closed-form expression for the exchange and correlation kernel
, which represents a key input for density functional studies of
inhomogeneous systems.Comment: 5 pages, 3 figure
- …
