2,706 research outputs found

    Dear Wife : the Civil War letters of Chester K. Leach

    Get PDF
    Occasional paper (University of Vermont. Center for Research on Vermont) ; no. 20

    Computational phenotyping of two-person interactions reveals differential neural response to depth-of-thought.

    Get PDF
    Reciprocating exchange with other humans requires individuals to infer the intentions of their partners. Despite the importance of this ability in healthy cognition and its impact in disease, the dimensions employed and computations involved in such inferences are not clear. We used a computational theory-of-mind model to classify styles of interaction in 195 pairs of subjects playing a multi-round economic exchange game. This classification produces an estimate of a subject's depth-of-thought in the game (low, medium, high), a parameter that governs the richness of the models they build of their partner. Subjects in each category showed distinct neural correlates of learning signals associated with different depths-of-thought. The model also detected differences in depth-of-thought between two groups of healthy subjects: one playing patients with psychiatric disease and the other playing healthy controls. The neural response categories identified by this computational characterization of theory-of-mind may yield objective biomarkers useful in the identification and characterization of pathologies that perturb the capacity to model and interact with other humans

    Classical and Quantum-like approaches to Charged-Particle Fluids in a Quadrupole

    Get PDF
    A classical description of the dynamics of a dissipative charged-particle fluid in a quadrupole-like device is developed. It is shown that the set of the classical fluid equations contains the same information as a complex function satisfying a Schrodinger-like equation in which Planck's constant is replaced by the time-varying emittance, which is related to the time-varying temperature of the fluid. The squared modulus and the gradient of the phase of this complex function are proportional to the fluid density and to the current velocity, respectively. Within this framework, the dynamics of an electron bunch in a storage ring in the presence of radiation damping and quantum-excitation is recovered. Furthermore, both standard and generalized (including dissipation) coherent states that may be associated with the classical particle fluids are fully described in terms of the above formalism.Comment: LaTex, to appear in Physica Script

    On the completeness of quantum computation models

    Full text link
    The notion of computability is stable (i.e. independent of the choice of an indexing) over infinite-dimensional vector spaces provided they have a finite "tensorial dimension". Such vector spaces with a finite tensorial dimension permit to define an absolute notion of completeness for quantum computation models and give a precise meaning to the Church-Turing thesis in the framework of quantum theory. (Extra keywords: quantum programming languages, denotational semantics, universality.)Comment: 15 pages, LaTe

    Quasiperiodic spin-orbit motion and spin tunes in storage rings

    Get PDF
    We present an in-depth analysis of the concept of spin precession frequency for integrable orbital motion in storage rings. Spin motion on the periodic closed orbit of a storage ring can be analyzed in terms of the Floquet theorem for equations of motion with periodic parameters and a spin precession frequency emerges in a Floquet exponent as an additional frequency of the system. To define a spin precession frequency on nonperiodic synchro-betatron orbits we exploit the important concept of quasiperiodicity. This allows a generalization of the Floquet theorem so that a spin precession frequency can be defined in this case too. This frequency appears in a Floquet-like exponent as an additional frequency in the system in analogy with the case of motion on the closed orbit. These circumstances lead naturally to the definition of the uniform precession rate and a definition of spin tune. A spin tune is a uniform precession rate obtained when certain conditions are fulfilled. Having defined spin tune we define spin-orbit resonance on synchro--betatron orbits and examine its consequences. We give conditions for the existence of uniform precession rates and spin tunes (e.g. where small divisors are controlled by applying a Diophantine condition) and illustrate the various aspects of our description with several examples. The formalism also suggests the use of spectral analysis to ``measure'' spin tune during computer simulations of spin motion on synchro-betatron orbits.Comment: 62 pages, 1 figure. A slight extension of the published versio

    “A peculiar time in my life”: making sense of illness and recovery with gynaecological cancer

    Get PDF
    Purpose: Worldwide there are nearly 1.1 million new cases of gynaecological cancer annually. In England, uterine, ovarian and cervical cancers comprize the third most common type of new cancer in women. Research with gynaecological cancer patients within 6 months of diagnosis is rare, as is data collection that is roughly contemporaneous with treatment. Our aim was to explore the experiences of women who were, at study entry, within 6 weeks of surgery or were undergoing chemotherapy or radiotherapy. Methods: An interpretative phenomenological analysis (IPA) of data from 16 women in five focus groups was conducted in the UK, exploring women’s experiences of being diagnosed with and treated for gynaecological cancer. Results: Participants conceptualized their experiences temporally, from the shock of diagnosis, through their cancer treatment, to thinking about recovery. They tried to make sense of diagnosis, even with treatment being complete. In the context of the Self-Regulation Model, these women were struggling to interpret a changing and multi-faceted illness identity, and attempting to return to pre-illness levels of health. Conclusions: This study adds to this under-studied time period in cancer survivorship. The results suggest that survivors’ goals may change from returning to pre-illness status to reformulating goals as survival time increases.N/

    Rich Situated Attitudes

    Get PDF
    We outline a novel theory of natural language meaning, Rich Situated Semantics [RSS], on which the content of sentential utterances is semantically rich and informationally situated. In virtue of its situatedness, an utterance’s rich situated content varies with the informational situation of the cognitive agent interpreting the utterance. In virtue of its richness, this content contains information beyond the utterance’s lexically encoded information. The agent-dependence of rich situated content solves a number of problems in semantics and the philosophy of language (cf. [14, 20, 25]). In particular, since RSS varies the granularity of utterance contents with the interpreting agent’s informational situation, it solves the problem of finding suitably fine- or coarse-grained objects for the content of propositional attitudes. In virtue of this variation, a layman will reason with more propositions than an expert

    Access to Archived Astronaut Data for Human Research Program Researchers: Update on Progress and Process Improvements

    Get PDF
    Since the 2010 NASA directive to make the Life Sciences Data Archive (LSDA) and Lifetime Surveillance of Astronaut Health (LSAH) data archives more accessible by the research and operational communities, demand for astronaut medical data has increased greatly. LSAH and LSDA personnel are working with Human Research Program on many fronts to improve data access and decrease lead time for release of data. Some examples include the following: Feasibility reviews for NASA Research Announcement (NRA) data mining proposals; Improved communication, support for researchers, and process improvements for retrospective Institutional Review Board (IRB) protocols; Supplemental data sharing for flight investigators versus purely retrospective studies; Work with the Multilateral Human Research Panel for Exploration (MHRPE) to develop acceptable data sharing and crew consent processes and to organize inter-agency data coordinators to facilitate requests for international crewmember data. Current metrics on data requests crew consenting will be presented, along with limitations on contacting crew to obtain consent. Categories of medical monitoring data available for request will be presented as well as flow diagrams detailing data request processing and approval steps

    Ready ... Go: Amplitude of the fMRI Signal Encodes Expectation of Cue Arrival Time

    Get PDF
    What happens when the brain awaits a signal of uncertain arrival time, as when a sprinter waits for the starting pistol? And what happens just after the starting pistol fires? Using functional magnetic resonance imaging (fMRI), we have discovered a novel correlate of temporal expectations in several brain regions, most prominently in the supplementary motor area (SMA). Contrary to expectations, we found little fMRI activity during the waiting period; however, a large signal appears after the “go” signal, the amplitude of which reflects learned expectations about the distribution of possible waiting times. Specifically, the amplitude of the fMRI signal appears to encode a cumulative conditional probability, also known as the cumulative hazard function. The fMRI signal loses its dependence on waiting time in a “countdown” condition in which the arrival time of the go cue is known in advance, suggesting that the signal encodes temporal probabilities rather than simply elapsed time. The dependence of the signal on temporal expectation is present in “no-go” conditions, demonstrating that the effect is not a consequence of motor output. Finally, the encoding is not dependent on modality, operating in the same manner with auditory or visual signals. This finding extends our understanding of the relationship between temporal expectancy and measurable neural signals
    corecore