30 research outputs found
The prevalence of hypertension and abnormal kidney function in children with sickle cell disease –a cross sectional review
High-resolution methylome analysis of renal cell carcinoma and identification of aberrant epigenetic changes in gene bodies.
ACTIVE VIBRATION CONTROL OF SEISMICALLY EXCITED STRUCTURES BY ATMDS: STABILITY AND PERFORMANCE ROBUSTNESS PERSPECTIVE
Kidney Cancer Is Characterized by Aberrant Methylation of Tissue-Specific Enhancers That Are Prognostic for Overall Survival
interior, mihrab and squinc
Transcriptome Analysis of Human Diabetic Kidney Disease
OBJECTIVE: Diabetic kidney disease (DKD) is the single leading cause of kidney failure in the U.S., for which a cure has not yet been found. The aim of our study was to provide an unbiased catalog of gene-expression changes in human diabetic kidney biopsy samples. RESEARCH DESIGN AND METHODS: Affymetrix expression arrays were used to identify differentially regulated transcripts in 44 microdissected human kidney samples. DKD samples were significant for their racial diversity and decreased glomerular filtration rate (~25–35 mL/min). Stringent statistical analysis, using the Benjamini-Hochberg corrected two-tailed t test, was used to identify differentially expressed transcripts in control and diseased glomeruli and tubuli. Two different web-based algorithms were used to define differentially regulated pathways. RESULTS: We identified 1,700 differentially expressed probesets in DKD glomeruli and 1,831 in diabetic tubuli, and 330 probesets were commonly differentially expressed in both compartments. Pathway analysis highlighted the regulation of Ras homolog gene family member A, Cdc42, integrin, integrin-linked kinase, and vascular endothelial growth factor signaling in DKD glomeruli. The tubulointerstitial compartment showed strong enrichment for inflammation-related pathways. The canonical complement signaling pathway was determined to be statistically differentially regulated in both DKD glomeruli and tubuli and was associated with increased glomerulosclerosis even in a different set of DKD samples. CONCLUSIONS: Our studies have cataloged gene-expression regulation and identified multiple novel genes and pathways that may play a role in the pathogenesis of DKD or could serve as biomarkers
Induced Mitogenic Activity in AML-12 Mouse Hepatocytes Exposed to Low-dose Ultra-Wideband Electromagnetic Radiation
Ultra–wideband (UWB) technology has increased with the use of various civilian and military applications. In the present study, we hypothesized that low-dose UWB electromagnetic radiation (UWBR) could elicit a mitogenic effect in AML-12 mouse hepatocytes, in vitro. To test this hypothesis, we exposed AML-12 mouse hepatocytes, to UWBR in a specially constructed gigahertz transverse electromagnetic mode (GTEM) cell. Cells were exposed to UWBR for 2 h at a temperature of 23°C, a pulse width of 10 ns, a repetition rate of 1 kHz, and field strength of 5-20 kV/m. UWB pulses were triggered by an external pulse generator for UWBR exposure but were not triggered for the sham exposure. We performed an MTT Assay to assess cell viability for UWBR-treated and sham-exposed hepatocytes. Data from viability studies indicated a time-related increase in hepatocytes at time intervals from 8-24 h post exposure. UWBR exerted a statistically significant (p < 0.05) dose-dependent response in cell viability in both serum-treated and serum free medium (SFM) -treated hepatocytes. Western blot analysis of hepatocyte lysates demonstrated that cyclin A protein was induced in hepatocytes, suggesting that increased MTT activity after UWBR exposure was due to cell proliferation. This study indicates that UWBR has a mitogenic effect on AML-12 mouse hepatocytes and implicates a possible role for UWBR in hepatocarcinoma
Supplementary Tables 1 - 6 from Kidney Cancer Is Characterized by Aberrant Methylation of Tissue-Specific Enhancers That Are Prognostic for Overall Survival
PDF file - 77K, Supplementary Table 1: Clinical and Pathological characteristics of tumor samples. Supplementary Table 2: Aberrantly methylated and underexpressed loci with overlapping enhancer (H3K4me1) marks. Supplementary Table 3: Transcription factor binding sites enriched in differentially methylated regions in RCC. Supplementary Table 4: List of Gene and Pathways hypermethylated and underexpressed in RCC. Supplementary Table 5: Genes deleted in RCC. Supplementary Table 6: Genes amplified in RCC.</p
Kidney Cancer Is Characterized by Aberrant Methylation of Tissue-Specific Enhancers That Are Prognostic for Overall Survival
Phosphine Organocatalysis
The hallmark of nucleophilic phosphine catalysis is the initial nucleophilic addition of a phosphine to an electrophilic starting material, producing a reactive zwitterionic intermediate, generally under mild conditions. In this Review, we classify nucleophilic phosphine catalysis reactions in terms of their electrophilic components. In the majority of cases, these electrophiles possess carbon-carbon multiple bonds: alkenes (section 2), allenes (section 3), alkynes (section 4), and Morita-Baylis-Hillman (MBH) alcohol derivatives (MBHADs; section 5). Within each of these sections, the reactions are compiled based on the nature of the second starting material-nucleophiles, dinucleophiles, electrophiles, and electrophile-nucleophiles. Nucleophilic phosphine catalysis reactions that occur via the initial addition to starting materials that do not possess carbon-carbon multiple bonds are collated in section 6. Although not catalytic in the phosphine, the formation of ylides through the nucleophilic addition of phosphines to carbon-carbon multiple bond-containing compounds is intimately related to the catalysis and is discussed in section 7. Finally, section 8 compiles miscellaneous topics, including annulations of the Hüisgen zwitterion, phosphine-mediated reductions, iminophosphorane organocatalysis, and catalytic variants of classical phosphine oxide-generating reactions
