2,304 research outputs found
Sequential weak measurement
The notion of weak measurement provides a formalism for extracting
information from a quantum system in the limit of vanishing disturbance to its
state. Here we extend this formalism to the measurement of sequences of
observables. When these observables do not commute, we may obtain information
about joint properties of a quantum system that would be forbidden in the usual
strong measurement scenario. As an application, we provide a physically
compelling characterisation of the notion of counterfactual quantum
computation
Examination of smears for tubercle bacilli by Fluorescence Microscopy
IN underdeveloped countries, laboratory facilities for the bacteriological
diagnosis of tuberculosis are at present, very limited. Cultural methods are
unlikely to be used on a large scale for many years to come. It is, therefore, important to
investigate the most economical method of examining smears for
tubercle bacilli. Fluorescence microscopy was introduced by Hagemann (1937)
and has since been described by many authors, including Tanner (1941, 1948), Lind
and Shaughnessy (1941), Lempert (1944), Norman and Jelks (1945), Clegg and
Foster-Carter (1946), Wilson (1952), Von Haebler and Murray (1954), and Needham
(1957). The great advantage claimed for this method is that stained bacilli can be
detected using a much lower magnification than with the usual Ziehl-Neelsen
method. Considerable time is saved in examining smears and larger areas can be
searched. The method has not been widely employed for two reasons. In the
first place, the light source must be very bright and many of the optical systems
described previously have only supplied sufficient light if the equipment was used in
a darkened room. Secondly, some workers (Ritterhoff and Bowman, 1945; Kuster,
1939; Holm and Plum, 1943) consider that false positive results can be obtained,
since some smears may contain small naturally fluorescent particles which can be
confused with bacilli.
Equipment for fluorescence microscopy that can be used in normal daylight
has been in use at the Tuberculosis Chemotherapy Centre, Madras, for over two
years. When it was first introduced, a comparison between this method and the
conventional Ziehl-Neelsen method was undertaken to test their relative sensitivities,
and to see whether fluorescence microscopy yielded false positive results.
The results of this comparison are described
Loci for primary ciliary dyskinesia map to chromosome 16p12.1-12.2 and 15q13.1-15.1 in Faroe Islands and Israeli Druze genetic isolates
The Susceptibility to Hydrogen Peroxide of Indian and British Isoniazid-Sensitive and Isoniazid- Resistant Tubercle Bacilli
The present work describes an attempt to modify the method of Kreis and Le
Joubioux (1957a) so that it would accurately estimate the relative proportions of
catalase-positive and catalase-negative organisms in strains containing mixtures of
the two types. A bactericidal test was chosen in preference to a bacteriostatic test,
since it is difficult to obtain quantitative measurement with the latter technique. In
performing a bactericidal test residual peroxide must be inactivated or removed
by dilution so that it does not inhibit the growth of surviving organisms. Knox,
Meadow and Worssam (1956) removed peroxide by centrifugation and washing,
but this method was considered impracticable if this test were to be used on a large scale, and likely to produce inaccurate counts on the surviving organisms. In the
present work the method of removal of peroxide was studied as well as the determination
of the optimal peroxide concentration and period of exposure which would kill
all catalase-negative organisms, but would leave catalase-positive organisms
unaffected. In addition, the method of Kreis & Le Joubioux (1957a) was modified
by reducing the inoculum of organisms exposed to peroxide so that catalase-positive
bacilli would not be able to destroy peroxide during the test itself. The standardised
bactericidal test was then employed in comparing the susceptibility to peroxide of
isoniazid-sensitive strains from British and Indian patients, and in investigating
the relationship between the peroxide susceptibility and the catalase activity of their
isoniazid-resistant mutant strains
Altered Cerebellar Short-Term Plasticity but No Change in Postsynaptic AMPA-Type Glutamate Receptors in a Mouse Model of Juvenile Batten Disease
Juvenile Batten disease is the most common progressive neurodegenerative disorder of childhood. It is associated with mutations in the CLN3 gene, causing loss of function of CLN3 protein and degeneration of cerebellar and retinal neurons. It has been proposed that changes in granule cell AMPA-type glutamate receptors (AMPARs) contribute to the cerebellar dysfunction. In this study we compared AMPAR properties and synaptic transmission in cerebellar granule cells from wild-type and Cln3 knockout mice. In Cln3Δex1–6 cells the amplitude of AMPA-evoked whole-cell currents was unchanged. Similarly, we found no change in the amplitude, kinetics, or rectification of synaptic currents evoked by individual quanta, or in their underlying single-channel conductance. We found no change in cerebellar expression of GluA2 or GluA4 protein. By contrast, we observed a reduced number of quantal events following mossy-fiber stimulation in Sr2+, altered short-term plasticity in conditions of reduced extracellular Ca2+, and reduced mossy fiber vesicle number. Thus, while our results suggest early presynaptic changes in the Cln3Δex1–6 mouse model of juvenile Batten disease, they reveal no evidence for altered postsynaptic AMPARs
Nondestructive selective probing of phononic excitations in a cold Bose gas using impurities
We introduce a detector that selectively probes the phononic excitations of a
cold Bose gas. The detector is composed of a single impurity atom confined by a
double-well potential, where the two lowest eigenstates of the impurity form an
effective probe qubit that is coupled to the phonons via density-density
interactions with the bosons. The system is analogous to a two-level atom
coupled to photons of the radiation field. We demonstrate that tracking the
evolution of the qubit populations allows probing both thermal and coherent
excitations in targeted phonon modes. The targeted modes are selected in both
energy and momentum by adjusting the impurity's potential. We show how to use
the detector to observe coherent density waves and to measure temperatures of
the Bose gas down to the nano-Kelvin regime. We analyze how our scheme could be
realized experimentally, including the possibility of using an array of
multiple impurities to achieve greater precision from a single experimental
run.Comment: 11+4 pages, 7 figure
The detection of airborne transmission of tuberculosis from HIV-infected patients, using an in vivo air sampling model
Background. Nosocomial transmission of tuberculosis remains an important public health problem. We created an in vivo air sampling model to study airborne transmission of tuberculosis from patients coinfected with human immunodeficiency virus (HIV) and to evaluate environmental control measures.
Methods. An animal facility was built above a mechanically ventilated HIV‐tuberculosis ward in Lima, Peru. A mean of 92 guinea pigs were continuously exposed to all ward exhaust air for 16 months. Animals had tuberculin skin tests performed at monthly intervals, and those with positive reactions were removed for autopsy and culture for tuberculosis.
Results. Over 505 consecutive days, there were 118 ward admissions by 97 patients with pulmonary tuberculosis, with a median duration of hospitalization of 11 days. All patients were infected with HIV and constituted a heterogeneous group with both new and existing diagnoses of tuberculosis. There was a wide variation in monthly rates of guinea pigs developing positive tuberculin test results (0%–53%). Of 292 animals exposed to ward air, 159 developed positive tuberculin skin test results, of which 129 had laboratory confirmation of tuberculosis. The HIV‐positive patients with pulmonary tuberculosis produced a mean of 8.2 infectious quanta per hour, compared with 1.25 for HIV‐negative patients with tuberculosis in similar studies from the 1950s. The mean monthly patient infectiousness varied greatly, from production of 0–44 infectious quanta per hour, as did the theoretical risk for a health care worker to acquire tuberculosis by breathing ward air.
Conclusions. HIV‐positive patients with tuberculosis varied greatly in their infectiousness, and some were highly infectious. Use of environmental control strategies for nosocomial tuberculosis is therefore a priority, especially in areas with a high prevalence of both tuberculosis and HIV infection
Quantitative predictions on auxin-induced polar distribution of PIN proteins during vein formation in leaves
The dynamic patterning of the plant hormone auxin and its efflux facilitator
the PIN protein are the key regulator for the spatial and temporal organization
of plant development. In particular auxin induces the polar localization of its
own efflux facilitator. Due to this positive feedback auxin flow is directed
and patterns of auxin and PIN arise. During the earliest stage of vein
initiation in leaves auxin accumulates in a single cell in a rim of epidermal
cells from which it flows into the ground meristem tissue of the leaf blade.
There the localized auxin supply yields the successive polarization of PIN
distribution along a strand of cells. We model the auxin and PIN dynamics
within cells with a minimal canalization model. Solving the model analytically
we uncover an excitable polarization front that triggers a polar distribution
of PIN proteins in cells. As polarization fronts may extend to opposing
directions from their initiation site we suggest a possible resolution to the
puzzling occurrence of bipolar cells, such we offer an explanation for the
development of closed, looped veins. Employing non-linear analysis we identify
the role of the contributing microscopic processes during polarization.
Furthermore, we deduce quantitative predictions on polarization fronts
establishing a route to determine the up to now largely unknown kinetic rates
of auxin and PIN dynamics.Comment: 9 pages, 4 figures, supplemental information included, accepted for
publication in Eur. Phys. J.
Islands of conformational stability for Filopodia
Filopodia are long, thin protrusions formed when bundles of fibers grow outwardly from a cell surface while remaining closed in a membrane tube. We study the subtle issue of the mechanical stability of such filopodia and how this depends on the deformation of the membrane that arises when the fiber bundle adopts a helical configuration. We calculate the ground state conformation of such filopodia, taking into account the steric interaction between the membrane and the enclosed semiflexible fiber bundle. For typical filopodia we find that a minimum number of fibers is required for filopodium stability. Our calculation elucidates how experimentally observed filopodia can obviate the classical Euler buckling condition and remain stable up to several tens of . We briefly discuss how experimental observation of the results obtained in this work for the helical-like deformations of enclosing membrane tubes in filopodia could possibly be observed in the acrosomal reactions of the sea cucumber Thyone, and the horseshoe crab Limulus. Any realistic future theories for filopodium stability are likely to rely on an accurate treatment of such steric effects, as analysed in this work
Storage capacity of correlated perceptrons
We consider an ensemble of single-layer perceptrons exposed to random
inputs and investigate the conditions under which the couplings of these
perceptrons can be chosen such that prescribed correlations between the outputs
occur. A general formalism is introduced using a multi-perceptron costfunction
that allows to determine the maximal number of random inputs as a function of
the desired values of the correlations. Replica-symmetric results for and
are compared with properties of two-layer networks of tree-structure and
fixed Boolean function between hidden units and output. The results show which
correlations in the hidden layer of multi-layer neural networks are crucial for
the value of the storage capacity.Comment: 16 pages, Latex2
- …
