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We introduce a detector that selectively probes the phononic excitations of a cold Bose gas. The detector
is composed of a single impurity atom confined by a double-well potential, where the two lowest eigenstates
of the impurity form an effective probe qubit that is coupledto the phonons via density-density interactions
with the bosons. The system is analogous to a two-level atom coupled to photons of the radiation field. We
demonstrate that tracking the evolution of the qubit populations allows probing both thermal and coherent exci-
tations in targeted phonon modes. The targeted modes are selected in both energy and momentum by adjusting
the impurity’s potential. We show how to use the detector to observe coherent density waves and to measure
temperatures of the Bose gas down to the nano-Kelvin regime.We analyze how our scheme could be realized
experimentally, including the possibility of using an array of multiple impurities to achieve greater precision
from a single experimental run.

I. INTRODUCTION

Cold atomic gases play a key role in emerging quantum
technologies, from the simulation of fundamental physics [1–
3] and computation [4, 5], to time-keeping [6]. It is therefore
essential that, as well as control, we are able to accurately
probe the properties of atomic gases. Minimally invasive mea-
surement schemes are of particular interest, since it is often
crucial that this probing disturbs the gas as little as possible.

With this general aim in mind, we here build on a grow-
ing body of work, largely theoretical, in which a small quan-
tum system — a probe — is coupled to the system of interest
and then measured in order to extract information about that
system. This has previously been shown to allow the extrac-
tion of information about bandwidth and gaps in the excitation
spectrum [7], non-equilibrium work distributions [8, 9], tem-
perature [10, 11], non-Markovianity [12–14], effective Hamil-
tonian parameters [15], phase transitions [16], and the Unruh
effect [17], often in a cold atom setting. The recent surges
in experimental control of such systems [18–21] bring their
realization within reach.

In our case, we consider a weakly-interacting Bose gas de-
scribed by its phononic excitations above a condensate. We
devise a detector to probe coherent and thermal occupation
of a tunable subset of these modes. Detecting coherent ex-
citations of a variety of wavelengths is important, for in-
stance, when Bose gases are used to simulate gravitational
models [22], or for the study of dispersive shock waves [23–
25]. Thermal excitations store information about the temper-
ature of a gas, and thus selective probing of these acts as a
thermometer. Obtaining accurate estimates of temperatureis
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essential in many uses of cold gases in quantum technologies.
Standard techniques to probe Bose gases are time-of-flight

(TOF), and in-situ phase-contrast [26] or absorption [27]
imaging [28]. From the velocity distribution measured in TOF
one can infer properties of the underlying state of the Bose
gas, in particular, information about both static (e.g. tempera-
ture) and dynamical properties (e.g. sound propagation) [26].
However, the achievable precision in, say, a temperature mea-
surement decreases as the nano-Kelvin regime is approached:
for example, a precision of 10 % was reported in Ref. [29].
Moreover, if the expanding clouds are too dense, TOF imag-
ing is no longer reliable [30].In-situ imaging, suitable also for
dense clouds, is inherently limited in resolution by the wave-

Figure 1. (Color online) (a) The phonon detector consists ofa single
impurity atom in a double-well potentialVa with well width σ and
separation2L, and barrier height∆V . The impurity is restricted to
the two lowest states with symmetric and antisymmetric wavefunc-
tionsφ0 andφ1, separated by the energy splitting2J . This detector
is immersed in a weakly-interacting Bose gas and acts as a probe. (b)
In two and three dimensions, the impurity is trapped by a potential
that has the same double-well shape in one direction but is harmonic
in the remaining orthogonal directions.
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length of light. Both TOF andin-situ imaging constitute a
destructivemeasurement on the Bose gas.

In contrast, the detector proposed here is potentiallynon-
destructive. We analyze the potential and limitations of the
detector, showing that, in principle, accurate measurements
of temperatures on the order of nano-Kelvin are achievable,
and that coherent density waves can be detected even if their
wavelength is smaller than that of light.

The detector, shown in Fig. 1, comprises an impurity form-
ing a qubit from the two lowest eigenstates of a double-well
potential. The density-density interaction of the impurity and
bosons translates into a multi-mode quantum Rabi type qubit-
phonon interaction, capable of inducing Rabi oscillations(co-
herently occupied modes) and equilibration described by rate
equations (thermally occupied modes). In either case the de-
tector’s evolution probes phonon modes of energy equal to the
qubit energy splitting and wavelengths compatible with the
distance between the two wells. The sensitivity to different
energies and momenta may thus be tuned by judiciously ad-
justing the double-well potential. It is this flexibility inselect-
ing energies and momenta over a range relevant to the Bose
gas that is responsible for the success of the double-well im-
purity as a probe, in contrast, for example, to a qubit formed
by the internal states of an atom in a single well.

This paper is organized as follows. First, in Sec. II we intro-
duce the detector-phonon system and the model describing it.
Second, in Sec. III we derive the equations of motion for the
detector in the presence of both thermal and coherent excita-
tion of the phonon modes. In Sec. IV we then show how track-
ing this evolution allows one to measure the temperature of the
bath and to detect the coherent occupation of a mode. Finally,
in Sec. V we discuss how the detector may be implemented
experimentally, focusing on simultaneous measurements us-
ing multiple impurities, before concluding in Sec. VI. Details
of our analysis are left to the appendices.

II. MODEL

Our detector consists of a single impurity atom of speciesA
confined by a double-well potentialVa (cf. Fig. 1). We assume
that the impurity constitutes a qubit formed by the ground
and the first excited states of the potential,|0〉 and|1〉 respec-
tively, with corresponding wavefunctionsφ0(r) = 〈r|0〉 and
φ1(r) = 〈r|1〉. The tunneling between the two wells results
in an energy splitting of2J between these energy eigenstates.
The Hamiltonian of the detector reads

Ĥa = Jσ̂z, (1)

where the population inversion is represented by the usual
Pauli matrixσ̂z = |1〉〈1| − |0〉〈0|. We use units with~ = 1
throughout.

The dilute Bose gas is composed of bosons of speciesB
and confined by a shallow potentialVb, so that the gas is
practically homogeneous on the length scaleL of the impu-
rity. The bosons interact weakly with interaction strength

g = 4πab/mb, wheremb is the boson mass andab is the
boson-bosons-wave scattering length. At low temperatures
the bosons are condensed and it is sufficient to consider the
excitations, known as Bogoliubov phonons, on top of the con-
densate wavefunctionψ0(r) =

√
n0 with number densityn0.

In this approximation the Hamiltonian of the Bose gas, up to
a constant, is [31]

Ĥb =
∑

q 6=0

ωqb̂
†
q
b̂q , (2)

where the operator̂b†
q

(b̂q) creates (annihilates) a Bo-
goliubov phonon with momentumq and energyωq =
√

Eq(Eq + 2gn0). Here,Eq = |q|2/2mb is the free-particle
energy.

The functioning of the detector is based on collisions
with the background gas, in which bosons are scattered by
the impurity. At low energies, onlys-wave scattering con-
tributes significantly, with the momentum-independent scat-
tering cross-section4πa2ab, whereaab is thes-wave scattering
length for boson-impurity collisions [32]. We can therefore
make the pseudo-potential approximation [33], writing an ef-
fective impurity-boson interaction potential as

V (r̂− x̂) = κδ(r̂− x̂), (3)

wherer̂ and x̂ denote the coordinates of the boson and im-
purity, respectively. The coupling constantκ = 2πaab/mb

is chosen so that the Born approximation applied to Eq. (3)
predicts the correct scattering cross-section for collisions of
low-energy bosons from the impurity.

Within the pseudo-potential approximation, the effective
interaction between detector and the Bogoliubov phonons is
described, up to a constant, by the Hamiltonian

Ĥab =
∑

µ,ν

B̂µν ⊗ |µ〉〈ν| ,

where µ, ν ∈ {0, 1} and the operator elementŝBµν =

κ
∑

q 6=0(Mq,µν b̂
†
q
+ h.c.) are written in terms of matrix ele-

mentsMq,µν specifying the detector-phonon coupling. Under
the same approximations as used to obtainĤa andĤb with the
additional assumption of a weak couplingκ we find [31, 34]

Mq,µν = Sq

∫

drφµ(r)φ
∗
ν(r)e

iq·r ,

with Sq =
√

n0Eq/Vωq andV the volume of the Bose gas.
The pseudo-potential approximation is valid if any exci-

tation to higher vibrational states of the impurity can be ne-
glected, and if the initial wave-vectorq of the scattered atom
satisfiesqr0 ≫ 1, wherer0 is the effective range of the po-
tential. The ranger0 is expected to be on the order of the
scattering lengthaab [35]. Note that, due to the presence of
the impurity trapping potential, the lengthaab may differ from
the bare impurity-boson scattering length [36, 37].
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Figure 2. (Color online) (a) Dependence of the energy splitting
2J/ωa according to Eq. (4) as a function of (a) the relative well sep-
arationℓ, and (b)L andσ in terms of the natural Bose gas length
and energy scales, the healing lengthξ = 1/

√
mbgn0 and chemical

potentialgn0. The shaded region in the bottom right corner is inac-
cessible since hereL < σ. The other parameters for both plots are
D = 1, ma = 0.5mb and∆V/ωa = D.

A. Symmetric double well in the harmonic approximation

The properties of the detector are determined by the qubit
wavefunctionsφµ(r), which are in turn determined by the
shape of the double-well potentialVa(r). From here on we
consider tractable types of potentialVa(r) and approximate
wavefunctionsφµ(r) that enable us to analytically study the
dependence of the detector on its potential. Note that the ac-
curacy of the detector itself does not rely on the accuracy of
this assumption.

Explicitly, we consider a deep symmetric potential with a
local maximum atr = 0 and two minima atr = ±L such
that the qubit states are approximately described by symmetric
and antisymmetric superpositions of Gaussian wavefunctions
φ(r) = (πσ2)−D/4 exp(−r2/2σ2) of width σ = 1/

√
maωa

centered at the respective double well minimar = ±L. Here
ma is the mass of the impurity. In this case the energy splitting
2J between the qubit states obeys [38]

2J

ωa
=

[(

ℓ2 − 1

2

)

−D + 1− 2∆V

ωa

]

e−ℓ2 , (4)

whereℓ = L/σ. This is shown in Figs. 2(a) and (b) with
respect to the detector and Bose gas length and energy scales,
respectively.

The excitations to higher vibrational levels of the double
well potential can be neglected in the regime whereJ/ωa ≪
1. SinceJ/ωa decays exponentially withℓ this qubit regime
can be readily achieved.

For these wavefunctions, the interaction matrix elements
become

Mq,01 =Mq,10 = −iSq sin(q · L) e−σ2q2/4 ,

Mq,00 = Sq

[

cos(q · L) + e−ℓ2
]

e−σ2q2/4 ,

Mq,11 = Sq

[

cos(q · L)− e−ℓ2
]

e−σ2q2/4 .

(5)

The difference between the diagonal matrix elements is neg-
ligible whenℓ & 1 sinceMq,00 −Mq,11 ∼ e−ℓ2 . We may
therefore re-express the interaction Hamiltonian in this regime
as

Ĥab = B̂10 ⊗ σ̂x + B̂00 ⊗ 1 . (6)

The full Hamiltonian described by Eqs. (1), (2) and (6) rep-
resents a multi-mode quantum Rabi model, which forms the
basis for all of the following analysis. The operator ele-
ments areB̂10 = κ(n̂L − n̂R) and B̂00 = κ(n̂L + n̂R),
where n̂L =

∫

dr|φ(r + L)|2n̂(r) is the density deviation
n̂(r) =

∑

q 6=0 Sq(e
iq·rb̂†

q
+ h.c.) of the Bose gas fromn0,

averaged over the left well, and̂nR is similarly defined. The
Hamiltonian in Eq. (6) describes the coherent driving of the
qubit by the difference between the boson densities at the two
wells.

As we explain in detail in subsequent sections, the detec-
tor is sensitive to phonon modes whose energy and wave-
length approximately coincide with the corresponding energy
and length scales of the detector, namely2J , L andσ. In
App. A we describe a possible experimental realization of our
detector. There we demonstrate that a broad range of frequen-
cies and momenta may be accessed by modifying the impurity
trapping potentialVa within the limits of what is possible us-
ing current technology. Importantly, we find that the double-
well impurity detector is sensitive to the normal energy and
momentum scales corresponding to a typical Bose gas, but
can also probe a much broader spectrum of frequencies rang-
ing from several Hertz up to values on the order of100 kHz. In
Bose gases, the lower limit corresponds to nano-Kelvin tem-
peratures, while the upper limit corresponds to phonon modes
with sub-optical wavelengths. Our proposed detector there-
fore could enable the measurement of very low temperatures
(at the low frequency extreme) or short-distance density varia-
tions (at the high frequency extreme), which are difficult tore-
solve by alternative means. In the examples which follow we
mainly focus on these extreme cases, since they most aptly
illustrate the capabilities and limitations of the detector. We
also use that coherence times of the detector of more than 10
ms are readily achieved [39, 40].

III. EVOLUTION OF THE DETECTOR

In order for the detector to probe the Bose gas it must inter-
act with it for a timeτ and then be measured. The operation
of the detector is determined by how the reduced density op-
erator of the impuritŷρa(t) = trb{ρ̂(t)} evolves, with

∂

∂t
ρ̂a(t) = −i[Ĥa, ρ̂a(t)]− i trb{[Ĥab, ρ̂(t)]} , (7)

the equation governing this evolution,ρ̂(t) the density oper-
ator of the total system andtrb{ · } the partial trace over the
states of the Bose gas. In the following we solve Eq. (7) in
different approximations to determine the effect of different
states of the Bose gas on the detector.
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A. Damping by the thermal phonon bath

To start with, we analyze how the double-well qubit re-
sponds to thermal fluctuations of the Bose gas. The appropri-
ate tool for describing the evolution ofρ̂a is a quantum master
equation in Lindblad form, derived under the standard Born-
Markov and rotating wave approximations [41]. This equation
takes the form

∂ρ̂a(t)

∂t
= −i[Ĥa, ρ̂a]+

∑

s=±

ks

(

σ̂sρ̂a(t)σ̂
†
s−

1

2
{σ̂†

sσ̂s, ρ̂a(t)}
)

,

(8)
whereσ̂± = 1

2 (σ̂x ± iσ̂y). In writing Eq. (8), the small renor-
malization (Lamb shift) of the detector energy levels due to
the coupling with the gas has been neglected. The final term
in the equation describes stochastic transitions between popu-
lations of the detector, occurring at the rates

k− = 2π[n(2J) + 1]JD(2J) ,

k+ = 2πn(2J)JD(2J) ,
(9)

wheren(ω) = [exp(ω/kBT ) − 1]−1 is the average number
of phononic excitations of energyω. The spectral density is
given by

JD(ω) = κ2
∑

q 6=0

|Mq,10|2δ(ω − ωq). (10)

The evolution according to the master equation (8) has
the favorable property that populations and coherences ofρ̂a
evolve independently, as

ρ11(t) =

[

ρ11(0)−
k+

2k̄

]

e−2k̄t +
k+

2k̄
,

ρ10(t) = ρ10(0)e
−i2Jt−k̄t ,

(11)

wherek̄ = 1
2 (k+ + k−) is the average rate, whileρµν(t) =

tra{ρ̂a(t)|µ〉〈ν|}, with µ, ν ∈ {0, 1}, are the reduced den-
sity matrix elements. We see that the coherencesρ10 of the
double-well qubit decay exponentially due to the interaction
with the thermal phonon bath. Accordingly, in the long-time
limit, the qubit evolves towards equilibrium with the phonon
bath, while the coupling strength remains unchanged. That
is, the qubit evolves towards a mixed state with asymptotic
populationsρ00 = k−/(k+ + k−) andρ11 = k+/(k+ + k−)
and vanishing coherencesρ10, which corresponds to a thermal
state of temperatureT .

To give some insight into the characteristics of the equi-
libriation process, we evaluate the spectral density (10) in
the regime of large impurity widthsσ ≫ ξ, whereξ =
1/

√
mbgn0 is the healing length of the Bose gas. In this

regime we can replace the Bogoliubov dispersion relation
with its low-frequency approximationωq = c|q|, with c =
√

gn0/mb the speed of sound. In addition, we take the usual
continuum limitV−1

∑

q 6=0 → (2π)−D
∫

dq. In terms of the

Figure 3. (Color online) Spectral densitiesJD(ω) in the linear
regime [Eq. (12)] forD = 1 (green solid), 2 (red dotted), 3 (blue
dashed). The detector parameters used areσ = ξ, L = 5 ξ and
∆V = ωa, the detector-Bose gas coupling isκ = 5 g, and the Bose
gas densityn0ξ

D = 1.

characteristic frequenciesωL = c/L andωσ = c/σ, we then
obtain

J1(ω) =
κ2

2πgc
ω sin2(ω/ωL)e

− 1

2
(ω/ωσ)

2

,

J2(ω) =
κ2

8πgc2
ω2 [1− B0(2ω/ωL)] e

− 1

2
(ω/ωσ)

2

,

J3(ω) =
κ2

8π2gc3
ω3 [1− sinc(2ω/ωL)] e

− 1

2
(ω/ωσ)

2

.

(12)

Here,B0(x) is a Bessel function of the first kind. The detailed
low-frequency shape of the spectral density depends on the
frequencyωL, which is set by the well distance, whereas the
high-frequency cut-off is determined byωσ.

Figure 3 shows the spectral densities for different dimen-
sions, evaluated in the low-frequency approximation. For the
one-dimensional Bose gas, the spectral density exhibits sev-
eral maxima and vanishes periodically between these. The
qubit is thus completely decoupled from the Bose gas for spe-
cific values of the energy splitting2J . The origin of this struc-
ture is energy and momentum conservation, which in one di-
mension depends strictly on the matching between energyωq

and momentumq of the phonons and the energy splitting2J
and sizeL of the detector. For a two- and three-dimensional
Bose gas, the structure of the spectral density is significantly
less pronounced. In this case, the momentumq projected onto
the direction of the detectorL is the relevant conserved quan-
tity and phonons impinging on the detector from different an-
gles can always fulfill energy and momentum conservation.
For use outside the sound-like regime, we have evaluated the
spectral density using the full Bogoliubov dispersion relation
in App. B.

To conclude this section, we briefly discuss the range of
validity of the master equation. The Born-Markov approxi-
mation is valid so long as the dissipative evolution induced
by the bath occurs slowly compared to the thermal correlation
time of the bath, i.e.k± ≪ kBT . The spontaneous emission
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ratek− must also be much slower than the vacuum correla-
tion time τv, corresponding to the inverse of the bandwidth
of Bogoliubov frequencies that interact appreciably with the
impurity. The vacuum correlation time can be estimated as
τv ≈ σ/c whenσ & ξ, or τv ≈ mbσ

2 whenσ . ξ. Finally,
the rotating wave approximation is applicable only if the co-
herent evolution is significantly faster than the dissipative evo-
lution, i.e.J ≫ k±. In three dimensions, typical values of the
relevant parameters areτv ∼ 150µs and1/kBT ∼ 10ms at
T = 1 nK for an impurity size ofσ = 100 nm. Hence, for
Bose gas lifetimes on the order of1s all requirements can be
readily fulfilled.

B. Driving by coherent phonons

Next, we assume that the detector and the Bose gas, de-
scribed bŷρb(t), are not correlated so thatρ̂(t) = ρ̂a(t)⊗ρ̂b(t)
at all timest. In this regime Eq. (7) simplifies to

∂ρ̂a
∂t

(t) = −i[Ĥa + Ĥmf (t), ρ̂a(t)] , (13)

where we have introduced the mean-field Hamiltonian
Ĥmf (t) = trb{ρ̂b(t)Ĥab}.

The mean-field approximation does not account for quan-
tum fluctuations, but it is very suitable for describing exper-
iments with the phonon modes in coherent states. This situ-
ation occurs naturally when a classical potential acts on the
Bose gas, e.g., a laser beam [42] or the density of an im-
purity [43]. More precisely, for a Bose gas prepared in the
stateρ̂b(t) = |βp(t)〉〈βp(t)| with a single phonon mode of
frequencyωp occupied coherentlŷbq|βp〉 = δpqβp|βp〉, we
obtain the mean-field Hamiltonian

Ĥmf (t) = Ωp cos(ωpt− θp)σ̂x ,

which recovers the Hamiltonian of the classical Rabi model
with resonant Rabi frequencyΩp = 2κ|M∗

p,10βp| and initial
phaseθp = arg(βpM

∗
p,10). Making the rotating wave ap-

proximation, valid near resonanceΩp, |δp| ≪ ωp + 2J , with
δp = ωp−2J , we find coherent Rabi oscillations at frequency
Ω̃p = (Ω2

p
+ δ2

p
)1/2. Specifically, the expected population of

the ground stateρ00(t), given that the detector started in this
stateρ00(0) = 1, is found to be

ρ00(t) =
δ2
p

Ω̃2
p

+
Ω2

p

Ω̃2
p

cos2

(

Ω̃pt

2

)

. (14)

The amplitude of oscillations in the populationΩ2
p
/Ω̃2

p
is

near maximum when the detuning is small compared to the
resonant Rabi frequency, i.e.δp/Ωp ≪ 1. On the other
hand, the amplitude is near zero in the off-resonant case
δp/Ωp ≫ 1. Conservation of momentum and energy leads
to a non-trivial angular dependence of the Rabi frequency
Ωp = Ωp(p,L). Hence the detector is not only sensitive to
the energy of the incoming waves but also their direction. A

Figure 4. (Color online) The detector in a two-dimensional setup
with ma = 0.5mb, ∆V = ωa, σ = 0.1/|p|, andL = 0.27p/|p|2
is tuned close to resonance with a mode with the wavevectorp =
3 ŷ/ξ along the y-axis. (a) The amplitudeA = Ω2

p/Ω̃
2

p of coher-
ent oscillations exhibits a clear dependence on both magnitude and
direction ofp = (px, py), i.e., the direction and energy of the den-
sity waves. (b) Angular dependence of the Rabi frequencyΩp on the
direction ofp. The other parameters (for both plots) areκ = 10 g,
|βp| = 5, n0ξ

2 = 0.5, andV = (100 ξ)2.

specific example of the dependence of the oscillation ampli-
tude and frequency onp is shown in Figs. 4(a) and (b).

For the more realistic case that coherent occupation occurs
in Bose gas modes with a widthγ of frequencies aroundωp,
rather than a single mode, the impurity dynamics is given by
a coherent superposition of Rabi oscillations with frequency
spreadγ. These oscillations will go out of phase after a time
1/γ and thus will be visible ifγ . Ω̃p. Assuming this to be
true we hereon discuss only the single mode case.

Note that Eq. (13) is complemented by an equivalent ex-
pression with the roles of the detector and the Bose gas inter-
changed, which leads to higher-order corrections in the detec-
tor evolution. However, we assume that the evolution of the
initial state of the Bose gaŝρb(0) according to∂ρ̂b(t)/∂t =
−i[Ĥb, ρ̂b(t)] dominates over the back-action of the detec-
tor. In App. C we show that this assumption is justified in
the regime whereΩp/ωp ≪ |βp|2. This places a practical
limit on the amplitude of coherent density oscillations that can
be measured with our detector. Specifically, we must have
Ωp ≪ ωp in order for the rotating wave approximation to
hold, therefore the back-action of the detector on the gas can
be neglected if|βp|2 & 1.

C. Coherent driving in the presence of incoherent damping

Naturally, some thermal excitations will always be present
in the Bose gas and they cannot necessarily be ignored, as we
have assumed in Sec. III B. The full equation of motion for
ρ̂a, including both coherent driving and dissipative effects,is
analogous to the optical Bloch equations describing a laser-
driven two-level atom damped by the free radiation field (at
finite temperature), but in the context of cold atoms.
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Following this analogy we may express the state of the de-
tector in terms of the Bloch vectorv whose components are
given byvi = tra{ρ̂aσ̂i}with i = x, y, z. The resulting Bloch
equations in vector form read

dv

dt
= b× v − k̄c , (15)

whereb = (Ωq, 0, δq)
T acts as an effective magnetic field

andc = (vx, vy, 2vz − 2v0)
T , with v0 = (k+ − k−)/(k+ +

k−) the long-time asymptotic population inversion. In the
fully coherent case with̄k = 0 the solution of the Bloch
equations (15) reduces to the Rabi oscillations described by
Eq. (14). The general analytical solution of Eq. (15) is pre-
sented in App. D.

It follows from this solution that the double-well qubit in
the presence of both coherent near-resonant driving and damp-
ing acts very similarly to a classical receiver for electromag-
netic waves, i.e. a damped RLC circuit, that is tuned in res-
onance with a particular frequency. As such, a key quantity
in determining whether there will be visible Rabi oscillations
is the Q-factorQ = Ωp/2k̄ relating the resonant Rabi fre-
quency to the thermal decay. In the sound-like regimeσ ≫ ξ,
theQ-factor

Q =

(

2|βp|
2n(2J) + 1

)(

κSp

2πJD(2J)

)

sin(p · L) e−σ2p2/4 ,

is significantly increased when the spectral densityJD(2J)
is near one of its nodes. As a result, counter-intuitively, we
find that coherent oscillations are often clearest when the qubit
energy2J is detuned away fromωp towards smallerJD(2J),
even though, as shown in Sec. III B, this reduces the maximum
oscillation amplitudeΩ2

p
/Ω̃2

p
.

The other effect of damping is that the full width half maxi-
mum of the amplitude as a function of frequency gains a con-
tribution ∼ k̄ = Ωp/2Q due to lifetime broadening, in ad-
dition to the usual2Ωp. A low Q transition is thus slightly
easier to drive away from resonance.

IV. APPLICATION

In Sec. III we saw that a double-well qubit evolves in re-
sponse to phononic excitations in the Bose gas, both thermal
and coherent, of energy close to2J , which can therefore be
tuned to focus on modes of interest. This allows the mea-
surement of the average number of coherently and thermally
excited phonons present in these modes.

We focus on two examples of how our detector may be used
to probe the Bose gas non-destructively. The first is the accu-
rate measurement of the average occupation of phonon modes
of energy2J , from which the temperature of the Bose gas
can be inferred. The second is the detection of coherent den-
sity waves in the Bose gas. In both cases we show how the
parameters of the detector can be chosen to obtain reliable
measurement results.

A. Measuring the Bose gas temperature

We first show how the detector can be used to measure the
temperatureT0 of the Bose gas in the nano-Kelvin regime.
We present two different methods,(a) anequilibrium method,
and(b) a non-equilibrium method, either of which is capable
of accessing low temperatures as low asT0 ≈ 2J/kB, which
can be lowered into the nano-Kelvin regime.

a. Equilibrium method. A conventional thermometer re-
lies on the measurement of the population after full equili-
bration with the environment. To use the double-well qubit
as such a thermometer it is first allowed to come to equi-
librium with the Bose gas, then the excited-state population
ρ11 = k+/(k+ + k−) is measured. Knowledge of the pop-
ulationρ11 and the splitting2J is therefore sufficient to de-
termine the Bose-gas temperatureT0. The advantage of this
method is that it does not rely on the physics specific to the
system whose temperature is being measured. Specifically,
the accuracy of the thermometer does not rely on the accuracy
of the Bogoliubov description of the Bose gas.

A precise measurement ofT0 using this method requires
thatn(2J, T0) ≈ 1, or equivalently2J/kBT0 ≈ 1, so that the
populationρ11(T0) is sufficiently sensitive to the value ofT0.
This means that it is possible to measure temperaturesT0 on
the order of2J/kB. More specifically, in App. E we show
that the uncertainty in estimatingρ11(t) usingM measure-
ments of the state of the qubit in the energy basis contributes
an uncertainty∆T0 when measuringT0 obeying

∆T0
T0

=
1√
M

[

kBT0
2J

(2n(2J, T0) + 1)(n(2J, T0) + 1)1/2

e2J/kBT0 [n(2J, T0)]3/2

]

.

(16)
The uncertainty∆T0 has a global minimum of value

Figure 5. (Color online) Simulation of the temperature measure-
ment in two dimensions under ideal conditions using the values pre-
sented in Table I. The detector is initialized in its excitedstate|1〉
and evolves according to Eq. (11). The fictional measurementpoints
(green) are distributed around the expectation valueρ11(t) accord-
ing to a Bernoulli distribution obtained from5000 measurements at
each of the50 points. The corresponding plots show the decay of
the populationρ11(t) for temperatures (a)T0 = 0.5 gn0/kB and (b)
T1 = 10 gn0/kB , resulting in the markedly different decay times.
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D kBT0/gn0 kBT1/gn0 n0ξ
D σ/ξ L/ξ J/gn0 k̄(T0)/gn0 k̄(T1)/gn0 (∆T0/T0)eq. (∆T0/T0)non-eq.

1 0.01 1 1 0.5 1.5 3.21 · 10−3 2.16 · 10−4 2.08 · 10−2 4.64 % 1.67 %

2 0.5 10 5 0.1 0.271.22 · 10−1 5.74 · 10−3 1.12 · 10−1 5.96 % 0.86 %

3 5 100 20 0.01 0.036.17 · 10−1 2.07 · 10−3 4.12 · 10−2 11.5 % 0.59 %

Table I. Parameters and relative uncertainties(∆T0/T0)eq. for the equilibrium method according to Eq. (16), and(∆T0/T0)non-eq.for the non-
equilibrium method as obtained in a simulation of the shot noise for the temperature measurement under ideal conditions(see main text and
Fig. 5), whereM = 5000 measurements are performed to estimate the populationρ11(t) for eacht andt = ∞ for the equilibrium method.
For all cases we setV = (100 ξ)D, κ = 15 g, ∆V = Dωa andma = 0.5mb.

∼ M−1/2 at 2T0 ≈ J/kB and diverges asT0 becomes very
large or very small, which is consistent with the above esti-
mate2J/kBT0 ≈ 1.

b. Non-equilibrium method. The temperature is not only
revealed by the equilibrium populations, but also by how the
populations decay to equilibrium. Thus another approach isto
initialize the double-well qubit in state|1〉, observe the decay
of the populationρ11 towards its equilibrium value and extract
the temperature-dependent decay ratek̄(T ), from which the
temperature can be deduced. To avoid any sensitivity to the
precise values in the impurity-Bose gas or Bose gas Hamil-
tonian, beyond the assumption of a continuum of weakly-
interacting bosonic modes around energy2J , we in fact ex-
tract the decay rates̄k(T ) for two temperatures. The first is a
(high) reference temperatureT1 and the second is an unknown
temperatureT0 ≪ T1, which we determine from the ratio

k̄(T0)

k̄(T1)
=

2n(2J, T0) + 1

2n(2J, T1) + 1
, (17)

given the values ofT1 and 2J . This process of measuring
temperature by observing decay rates, rather than equilibrium
populations, differs fundamentally from a conventional ther-
mometer.

The non-equilibrium approach requires many measure-
ments in order to obtain a sufficiently precise estimate ofρ11
at multiple times. However, it also has the advantage that all
measurements can be carried out within a time much shorter
than the equilibration time. Moreover, if the temperature is
very small, whence the equilibrium value ofρ11 becomes
small, the equilibrium method is very susceptible to system-
atic errors in the population measurement, as well as heating
due to fluctuations in the double-well potential. Since larger
values ofρ11 are obtained during the non-equilibrium scheme
for measurements at small times, this method is less suscepti-
ble to such errors.

A precise measurement ofT0 using the non-equilibrium
method requires that2J/kBT0 . 1, orn(2J, T0) & 1. Specif-
ically, the measurement uncertainty for the value ofT0 using
the non-equilibrium method (derived in App. E) scales ap-
proximately as

∆T0
T0

≈ 1√
M

[

kBT0
2J

2n(2J, T0) + 1

2
√
2 ln(2)e2J/kBT0n2(2J, T0)

]

.

In accordance with the above estimate2J/kBT0 . 1 the

quantity in square brackets is on the order of unity for
2J/kBT0 ≈ 1, but rises quickly for smaller temperatures.

Note that the detector parametersL andσ, while keeping
2J/kBT0 fixed, can be tuned such that the spectral density
JD(2J) and the decay ratesk± result in the desired temporal
resolution. In particular, the incoherent evolution of thequbit
can be made sufficiently slow for the Born-Markov approxi-
mation to be valid, or fast enough to be within the coherence
time of the qubit.

To illustrate the measurement process for the non-
equilibrium method, we have simulated the shot noise result-
ing from a finite number of measurements during an ideal
experiment to determineT0 ∼ 1 nK, with a reference tem-
peratureT1 ∼ 100 nK. For the Bose gas and impurity pa-
rameters presented in Table I we obtain relative uncertainties
∆T0/T0 . 1 % after takingM = 5000 measurements at
each of the 50 time points. An example forD = 2 is de-
picted in Fig. 5. Likewise, under the same ideal conditions
and parameters, the uncertainties for the equilibrium method
according to Eq. (16) assuming full equilibration and taking
M = 5000 measurements are∆T0/T0 . 10 %. Hence, using
either method, it is, in principle, possible to precisely measure
temperatures in the nano-Kelvin regime.

B. Detection of coherent density waves

We next show how to detect the coherent occupation|βp|2
of a given modep on top of the thermal fluctuations of the
Bose gas. As shown in Sec. III B, a coherent density wave
induces coherent oscillations of the detector, damped by cou-
pling to the thermal background. We have already shown that,
for these oscillations to be clear, we must have that the Q-
factorQ = Ωp/2k̄ is larger than or on the order of unity,
and the detuningδp is on the order or smaller thanΩp. We
add here an additional requirement from the practicality of
observing oscillations within a reasonable time-scale, namely
the resonant Rabi frequencyΩp has to be not much smaller
than the natural Bose gas frequency scalegn0, which for real-
istic experimental parametersgn0 is of the order of 1kHz [44].
This last requirement amounts topσ . 1, and thus limits us
to wavelengths2π/p on the order of tens of nm or larger.

In Fig. 6 we show examples in one and two dimensions
for which it is possible to simultaneously meet all of these
requirements and observe oscillations ofρ00(t). In both cases
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Figure 6. Detection of a coherently occupied phonon mode with
|βp| = 5 and frequencyωp = 10 gn0 in one dimension (left) and
two dimensions (right). The detector is tuned close to resonance such
that2J ≈ ωp. The resulting oscillations ofρ00 (solid blue) andρ11
(dashed green) (a) in one dimension with Q-factorQ = 7.93 and
(b) in two dimensions withQ = 2.32 are clearly visible. Panels
(c) and (d) show the sensitivity of the oscillation amplitude (solid
blue) on changes of2J away fromωp, realized asL is varied away
from its near-resonant value, andσ fixed. Panels (e) and (f) show
the dependence of the Q-factor upon the same changes inL. The
values of2J corresponding to those chosen for the examples (a)
and (b) are indicated by the vertical dashed green lines. Thespe-
cific parameters of the Bose gas in 1D areT = 0.01 gn0/kB and
n0ξ = 1; in 2D we setT = 0.1 gn0/kB , n0ξ

2 = 10. The system
volume ist set toV = (100 ξ)D. The parameters of the detector in
1D areκ = 0.5 g, σ = 0.3/|p|, L = 0.62/|p| and in 2D we set
κ = 2 g, σ = 0.05/|p|, L = 0.14415/|p|. The impurity mass is
ma = 0.5mb, and the barrier height∆V = Dωa in both cases.

the detector is driven by a coherently occupied high-energy
mode with frequencyωp = 10 gn0, which forD = 1 (D = 2)
typically corresponds to a wavelength on the order ofλp ∼
100 nm (λp ∼ 1 µm).

The examples also illustrate the main limitation of our de-
tector as a detector of coherent density waves. ForQ & 1
the width of the resonance is of the orderΩp and thus the
fraction to which2J must be tuned close toωp is of the or-
derΩp/ωp. For increasingly largeωp/gn0 this fraction be-
comes very small, asΩp remains on the order ofgn0 or less.
The situation is worse for higherD. The sensitivity with re-
spect to2J is illustrated in Figs. 6(c) and (d) for one and two
dimensions, respectively. Conversely, the Q-factor is notso
sensitive to the value of2J , as shown in Figs. 6(e) and (f),
but remains close to unity. Coherent density waves with fre-
quenciesωp = 10 gn0 are thus at the upper end of what could
be realistically detected, with the sensitivities andQ-factors at

lower frequencies being much improved.
Finally, note that if one is interested only in whether or not

a given mode is occupied, the mere presence of oscillations
yields sufficient information. However, scanning through the
resonance should, in principle, yield enough data to determine
both the energy of the mode occupied (from resonant frequen-
cies), the axis along which its momentum is directed (by ob-
serving the dependence of oscillation amplitude onL), and
its occupation|βp|2 (from the shape of the resonance and the
frequencies of the oscillations).

V. PARALLEL MEASUREMENTS

It is of course always necessary to perform multiple mea-
surements in order to obtain estimates of the impurity qubit
populations that are sufficiently precise for the desired appli-
cation of the detector. Realizing the whole measurement pro-
cedure (creation of Bose gas and detector, evolution and mea-
surement) a large number of timesM results inM indepen-
dent measurements of the impurity in the energy eigenbasis
and thus provides an estimate of the excited state population
ρ11 with binomial uncertainty∆ρ11 =

√

ρ11(1− ρ11)/M
(see App. F 2) [45]. However, it is more economical to per-
form M simultaneous measurements of the states ofM dif-
ferent impurities interacting with the same single realization
of the Bose gas and use those results to estimateρ11.

A crucial question is whether in the latter case the state of
each impurity is unaffected by and independent from the oth-
ers, thus ensuring that the precision and accuracy of the com-
bined measurement scales in the same way as for multiple de-
tectors, each interacting with its own separate realization of
the Bose gas. Neglecting direct interactions of the detectors
by assuming non-overlapping well-functions, we need only
investigate the interaction of the detectors via the Bose gas.
In the following, we examine this problem separately for the
cases of incoherent damping due to thermally occupied Bo-
goliubov modes, and oscillatory driving due to coherently oc-
cupied modes. We will focus on the most promising set-up,
namely a linear array of double-well potentials, in combina-
tion with a preparation and measurement scheme as described
in App. F.

Figure 7. (Color online) If an array of impurities with lattice vectora
is arranged such thata · L = 0 and|a| ≫ L, no Bose gas-mediated
correlations between the impurities can arise.
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In the case of incoherent damping, our Born-Markov ap-
proach for a single impurity can be extended to describe the
dynamical generation of correlations between the impurities.
This is done in App. G. The impurities affect each other in
two distinct ways: a direct, coherent interaction mediatedby
the exchange of phonons, and an indirect, incoherent growth
of classical correlations due to their mutual interaction with
the background gas. Both of these effects are strongly depen-
dent on the geometry and the number of spatial dimensions.
This ultimately stems from the directional dependence of the
phonon radiation emanating from each double-well impurity,
which is strongest in the direction parallel toL, but vanishes
(at large distances) in the directions perpendicular toL. This
is entirely analogous to the directionality of the sound ema-
nating from a classical acoustic dipole.

In two or three dimensions, it is possible to place an array
of double-well impurities separated by a lattice vectora such
thata · L = 0 and|a| ≫ L (see Fig. 7). The generation of
correlations between the impurities is completely suppressed
in such an arrangement. In any other configuration, both the
direct and indirect interactions decay slowly with distance be-
tween the impurities, asymptotically asr−(D−1)/2.

In contrast, in one dimension, the impurities are constrained
to lie along a line parallel toL; furthermore, both the direct
and indirect interactions do not decay with distance. There-
fore, the correlations between impurities cannot be neglected
in one dimension. In configurations where correlations are
important, a more detailed analysis would be required in or-
der to interpret experiments using multiple detectors in a sin-
gle realisation of a one-dimensional Bose gas. This analysis
could in principle be carried out using the microscopic equa-
tion of motion presented in App. G. Note that the orientation
required to minimize correlations, i.e.,a ⊥ L may conflict
with some readout schemes, such as the band-mapping TOF
image described in App. F 2. In this casea ‖ L is the optimal
configuration [46].

Now we consider the case where multiple detectors inter-
act with a Bogoliubov mode in the coherent state|βp〉. To
the order of approximation considered, the mode in question
remains in a product state with the impurity detectors. There-
fore, to the same order of approximation, the impurities do not
become correlated with each other via their mutual interaction
with this mode. Nevertheless, the impurities could still con-
ceivably affect each other via their back-action on the state of
the gas.

The effect of each impurity on the Bose gas is to generate
additional phonons. If the number of extra phonons is small
compared to the mean number of phonons already present,
then the back-action of the detectors can be neglected. In
App. C we derive the conditions for this to be the case. We
find that, in the majority of configurations, the displacements
enacted by multiple impurities do not add up constructively.
Therefore, the effect of several impurities on a coherent state
of the Bose gas is no greater than the effect of one. Taking
our specific example of a linear array ofM impurities, we

find that the back-action of the detectors is negligible unless
2π(n − 1/M) . p · a . 2π(n + 1/M) for some integern,
a situation that is easy to avoid in practice by choosing the
lattice vectora appropriately.

It follows then that using an array of many double-wells,
where numbers in the thousands are easily achievable, we can
obtain accuracies corresponding to a large number of mea-
surements in the time it takes to perform a single measure-
ment, and, in principle, without destroying the state of the
Bose gas being measured.

VI. CONCLUSION

Quantum probes in general and localized atomic impurities
in particular offer an alternative way of probing many-body
quantum systems, with the potential to be non-destructive.
Specifically, probing phononic exciations is important, for ex-
ample, to measure temperature, and in the context of the sim-
ulation of gravitational models and shock-wave formation.
Here we have shown how to make use of the versatility of
the double-well qubit to probe the phononic excitations of a
weakly-interacting cold Bose gas. We have shown that, due
to the ability to localize the probe to tens of nanometers or
tune its resonant energy down to the nano-Kelvin regime, it
provides a flexible alternative to other probing techniques, for
example, imaging with light. Our technique has the additional
benefit of being potentiallynon-destructive. In an experiment,
a suitably aligned array ofM ∼ 1000 double wells allows the
user to realize many independent detectors simultaneously.

A major part of our proposal involves monitoring the non-
equilibrium dynamics of the impurity in order to infer prop-
erties of the Bose gas. This approach relies on, and is thus
only as accurate as, the Bogoliubov description of the Bose
gas. More generally, deviations of the detector from the ex-
pected behaviour may be useful for exploring the limits of the
Bogoliubov description.

We have focused on the use of the impurity as a probe that
measures the occupation of certain phonon modes. If the oc-
cupation of these modes is known by other means, the probe
could also measure the density of states of the Bose gas at a
specific energy. We also note that this same system may be
used to absorb and thereby remove specific excitations from a
phonon environment.
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T. Esslinger, Phys. Rev. Lett.87, 160405 (2001).

http://dx.doi.org/10.1103/PhysRevLett.74.1542
http://dx.doi.org/ 10.1103/PhysRevLett.87.160405


12

Appendix A: Experimental realization of the detector

A one-dimensional array of double wells can be created by
an optical lattice potential

V (r) = V0

[

cos2
(

2πr1
λ

)

− 4v cos2
(πr1
λ

)

]

×
[

1− exp

(

−2

D
∑

d=2

r2d
w2

)]

,

which is obtained by superposing two pairs of laser beams
with wavelengthsλ andλ/2, respectively, and beam widths
w [40, 48]. The well separation2L, curvatureωa, and sizes
of the barriers inside and between the double wells are deter-
mined by the relative intensity4v of the two lattices. Specifi-
cally, asv goes from0 to 1, the well separation2L goes from
λ/2 to λ arccos(v)/2π ≈ λ/2 (1− 2v/π), curvatureωa from
(2π/λ)

√

2V0/ma to (2π/λ)
√

2V0(1− v2)/ma, double-well
barrier height∆V from V0 to V0 (1 − v)2, and inter-double-
well barrier height fromV0 to V0 (1 + v)2. Choosingv . 1
therefore results in an array of separated double-wells, each
with L, ωa and∆V on the order ofλ,

√

2V0/maλ2 andωa

respectively.

It follows then that using typical experimental parameters
V0 . 103Er, ma ≈ 102 amu andw, λ ≈ µm, with Er =
4π2/2maλ

2 the recoil energy, it is possible to achieve spatial
scales as short asσ ≈ 10 nm and energy scales as high as
ωa/2π ≈ 100 kHz, respectively [49]. At the opposite end of
the spectrum, using a shallow lattice depthV0 ≈ 1Er, ma ≈
10 amu andw, λ ≈ 10µm, one may achieve spatial scalesσ ≈
1µm and energy scalesωa/2π ≈ 1 kHz. It is also possible to
simultaneously realizeL ≪ λ,w and thus∆V/ωa ≈ 1 while
exploring a broad range ofL/σ for which 2J is smaller than
or the same order asωa.

Fluctuations in the individual and parallel intensity and
phase of the lasers creating the two lattices cause the dephas-
ing of the impurity. For example, in Ref. [50] it is reported
that frequency fluctuations between the lattice lasers amount-
ing to< 100 kHz result in fluctuations of the bias between
the wells|Va(L) − Va(−L)| < 100 Hz. However, the total
magnitude of such fluctuations can be kept small such that co-
herence times of the atoms in the double wells of more than
10 ms have already been achieved [39, 40].

Appendix B: Spectral densities for general dispersion

We evaluate the general form of the spectral density inD
dimensions [cf. Eq. (10)] using the full Bogoliubov dispersion
relationωq =

√

Eq(Eq + 2gn0), which enters in the decay
rates given in Eqs. (9), in the continuum limit. In this limit
V−1

∑

q
→ (2π)−D

∫

dΩD

∫

dqqD−1, whereΩD is the sur-

face of the unit sphere inD dimensions, we find

JD(ω) =κ2
V

(2π)D

∫

dqδ(ω − ωq)q
D−1

∫

dΩD|Mq|2

=κ2
n0

(2π)D

∫

dωqδ(ω − ωq)
Eq(ωq)

ωq

(

∂ωq

∂q

)−1

× e−q(ωq)
2σ2/2

∫

dΩD sin2(q · L) ,

Hereq(ωq) is the inverse of the dispersion relationωq and the
angular integrals read

∫

dΩD sin2(q · L) =











2 sin2(qL) D = 1

π[1− B0(2qL)] D = 2

2π[1− sinc(2qL)] D = 3











.

Explicitly inserting the expressions for the inverse and the Ja-
cobian of the Bogoliubov dispersion,

ξ2q(ω)2 = 2
(

1 +
√

1 + (ω/gn0)2
)

,

(ξgn0)
−1 ∂ωq

∂q
= ξq

(

Eq + gn0

ωq

)

,

the spectral densities read

J1(ω)

gn0
=
(κ/g)2

πn0ξ

1

q(ω)ξ

Eq(ω)

Eq(ω) + 2gn0
e−

1
2 q(ω)2σ2

sin2 (q(ω)L) ,

J2(ω)

gn0
=

(κ/g)2

2πn0ξ2
Eq(ω)

Eq(ω) + 2gn0
e−

1
2 q(ω)2σ2

[1− B0(2q(ω)L)] ,

J3(ω)

gn0
=

(κ/g)2

2π2n0ξ3
q(ω)ξ

Eq(ω)

Eq(ω) + 2gn0

× e−
1
2 q(ω)2σ2

[1− sinc(2q(ω)L)] .

Appendix C: Back-action of impurities in the mean-field
approximation

Here we examine the conditions under which we can ne-
glect the back-action of impurities on a Bogoliubov mode
in the coherent state|βp〉. Within the mean-field approxi-
mation introduced in Sec. III B, the presence of the impu-
rity causes a displacement of the Bogoliubov coherent state
in phase space. The displacement operation is defined by
D̂(αp)|vac〉 = |αp〉, i.e. a displacement creates the coherent
state|αp〉 from the Bogoliubov ground state|vac〉, which sat-
isfiesb̂q|vac〉 = 0 for all q. If the magnitude of the displace-
ment parameterαp is much smaller than that of the coherent
state amplitudeβp, then we can say that the back-action of the
impurities is negligible. In other words, we would like to show
that the impurities do not create enough additional phononsin
the gas to have an appreciable effect on each other’s evolution.

If we considerM double-well impurities centered at the
positionsxi, the corresponding time-dependent displacement
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parameter is given by

αp(t) = −iκSpe
−σ2p2/4

M
∑

i=1

eip·xi

∫ t

0

ds eiωps[cos(p · L)

− i sin(p · L)〈σ̂(i)
x (s)〉],

where the operator̂σ(i)
x pertains to impurityi. For simplicity,

we take a constant〈σ̂(i)
x (s)〉 = 1, which amounts to the as-

sumption that each impurity is static and localised in the left
minimum of its double-well potential. In the majority of sit-
uations this assumption represents an over-estimate ofαp(t),
since the oscillations of the impurity dynamical variablesare
assumed to be far detuned from resonance withωp, and are
generally out of phase with each other. We further assume,
for the sake of concreteness, that the detectors are arranged in
a 1D lattice with lattice parametera. We thus obtain

|αp(t)|2 =
κ2S2

p

ω2
p

sin2(Mp · a/2)
sin2(p · a/2)

sin2(ωpt/2)e
−σ2p2/2.

(C1)
Neglecting the oscillatory time-dependence, the contribu-

tion of each individual impurity to Eq. (C1) is of order
κ2S2

p
e−σ2p2/2/ω2

p
. SinceS2

p
e−σ2p2/2 ∼ |Mp,01|2, we find

that the displacement due to a single impurity is small com-
pared toβp if

Ωp

ωp

≪ |βp|2, (C2)

where the resonant Rabi frequency isΩp = 2κ|M∗
p,10βp|.

Eq. (C2) is easily satisfied within the regime of validity of the
rotating wave approximation, whereΩp/ωp ≪ 1.

With M impurities we also have to include the factor
sin2(Mp · a/2)/ sin2(p · a/2), which is typically of order
unity and only takes significant values (∼ M2) whenq · a
differs from an integer multiple of2π by an amount of the or-
der2π/M or less. Hence, for nearly all cases the evolution of
the impurities is unaffected by the excitations they themselves
create in the Bose gas, since their contributions are generally
out of phase and therefore do not add up significantly.

Appendix D: General solution of the Bloch equations

We solve the Bloch equations (15) for the fully coherent
case (̄k = 0) to obtain the Rabi oscillations described by
Eq. (14), and for the resonant caseδp = 0 with damping
(k̄ 6= 0), which is used in Sec. IV B. In both cases we are
interested in the populationρ00(t) with the initial condition
ρ00(0) = 1. The populationρ00 is related to the Bloch vector
v throughρ00 = (1 − vz)/2.

The Bloch equations in matrix form readdv/dt =Mv+u

with u = (0, 0, k+ − k−)
T and

M =







−k̄ −δp 0

δp −k̄ −Ωp

0 Ωp −2k̄






.

In the coherent casēk = 0 the diagonal elements ofM are
zero andu = 0. The Bloch vector can be found directly
from v(t) = eMtv(0) with the initial conditionv(0) =
(0, 0,−1)T , for which we obtain

vx(t) =
δpΩp

Ω̃2
p

[cos(Ω̃pt)− 1] ,

vy(t) =
Ωp

Ω̃p

sin(Ω̃pt) ,

vz(t) = −
δ2
p

Ω̃2
p

−
Ω2

p

Ω̃2
p

cos(Ω̃pt) .

Equation (14) then follows from the solution forvz(t).
In the case with damping but no detuning the solution is of

the formv(t) = ṽ(t) +v∞, whereṽ(t) solvesdṽ/dt =M ṽ

andv∞ is the stationary state in the long-time limit. The latter
is found fromv∞ = −M−1u and given byv∞x = 0,

v∞y = Ωp

k− − k+

2k̄2 +Ω2
p

,

v∞z = k̄
k+ − k−

2k̄2 +Ω2
p

.

The solution for̃v(t) can be expressed in terms of the eigen-
vectorsmj and eigenvaluesλj of the matrixM as

ṽ(t) =
3
∑

j=1

cjmje
λj ,

where the coefficientscj are fixed by the initial conditions
ṽ(0) = v(0) − v∞ = (0,−v∞y ,−v∞z − 1). This procedure
finally yields the relevant component of the Bloch vector

ṽz(t) =
2Ωpv

∞
y − (v∞z + 1)(k̄ + wp)

2wp

e−
1

2
(3k̄+wp)t

−
2Ωpv

∞
y − (v∞z + 1)(k̄ − wp)

2wp

e−
1

2
(3k̄−wp)t .

The quantitywp = (k̄2 − 4Ω2
p
)1/2 is real-valued for strong

dampingk̄ ≫ Ωp and purely imaginary in the strong driving
regimeΩp ≫ k̄, in which case the populationρ00(t) = [1 −
v∞z − ṽz(t)]/2 exhibits clear oscillations.

Appendix E: Uncertainties in the temperature measurement

Now we quantify the uncertainty incurred in an experiment
to determine the Bose gas temperature resulting from the finite
number of measurements. We do this both for the equilibrium
method and the non-equilibrium method.

a. Equilibrium method. When extracting the tempera-
tureT0 from the equilibrium populationρ11 = k+/(k++k−),
given knowledge of2J , the value ofT0 responds to small
changesδρ11 of the equilibrium population as

δT0
T0

=
ρ11
T0

(

∂ρ11
∂T0

)−1
δρ11
ρ11

.
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Assuming that the estimate ofρ11 is obtained byM inde-
pendent measurements of the state of the qubit in the energy
basis, we find that the expected uncertainty∆T0 of the tem-
peratureT0 is

∆T0
T0

=
1√
M

kBT0
2J

(2n(2J, T0) + 1)(n(2J, T0) + 1)1/2

e2J/kBT0 [n(2J, T0)]3/2
,

where we have used the variancep(1− p) of a binomial vari-
able that takes0 and1 with probability(1− p) andp, respec-
tively, and the1/

√
M scaling of the standard deviation of an

average overM measurement outcomes.
b. Non-equilibrium method. If there is a small change

δk̄(T0) in the ratēk(T0) the corresponding changeδT0 in our
estimate ofT0 from Eq. (17) is given by

δT0
T0

=
kBT0
2J

2n(2J, T0) + 1

2e2J/kBT0n2(2J, T0)

δk̄(T0)

k̄(T0)
.

How accurately the ratēk(T0) can be measured is in turn
fundamentally limited by the accuracy to whichρ11 can be
measured. As an example, the rate

k̄(T0) =
1

2t0
ln

[

1− ρ11(∞)

ρ11(t0)− ρ11(∞)

]

,

can be determined from the values ofρ11(t) at two times,
firstly a time in the middle of the decay, e.g.,t0 =
ln(2)/2k̄(T0), and second a time at the end of the decayt1 ≫
1/k̄(T0), effectively t1 = ∞. For small changesδρ11(t0)
andδρ11(∞) in these values, the small changeδk̄(T0) in rate
k̄(T0) is thus given by

δk̄(T0)

k̄(T0)
=
δρ11(t0)− δρ11(∞)

2 ln(2)[1− ρ11(∞)]
,

where the denominator is roughly on the order or unity. As-
suming independent measurements ofρ11(t) at different times
and that the estimate ofρ11(t) is obtained as above (M inde-
pendent measurements) we obtain the expected uncertainty

∆T0
T0

=
kBT0
2J

2n(2J, T0) + 1

2e2J/kBT0n2(2J, T0)

×
√

ρ11(t0)[1 − ρ11(t0)] + ρ11(∞)[1 − ρ11(∞)]√
M2 ln(2)[1− ρ11(∞)]

,

for the estimate of the temperatureT0.
Assuming for example that the impurity parameters are

chosen such thatρ11(t0), ρ11(∞) ≈ 1/2, the resulting un-
certainty obeys

∆T0
T0

≈ 1√
M

kBT0
2J

2n(2J, T0) + 1

2
√
2 ln(2)e2J/kBT0n2(2J, T0)

.

Appendix F: Preparation and measurement of a single qubit

The measurement schemes proposed in Sec. IV require the
controlled preparation of the double-well qubit in its two low-
est eigenstates|0〉 or |1〉, as well as the measurement of the

qubit in its eigenbasis. Here, we discuss the experimental
techniques suitable to realize these requirements.

1. Preparation of the initial qubit state

For all of the procedures we propose the qubit is prepared
in either of the two states|0〉 or |1〉. We now briefly discuss,
how the initial state can be prepared experimentally.

We consider an array of double wells formed by a superpo-
sition of two lattices with wavelengths2λ andλ as discussed
in App. A. In such a setup the symmetric state is prepared
as follows: first, the2λ-lattice is unit-loaded with impurity
atoms by slowly increasing its intensity. Second, the intensity
of theλ-lattice is increased quickly to the desired value, while
avoiding vibrational excitation [48]. The barrier acts like a
beam splitter; the impurity atoms are now in the symmetric
state. With aπ/2-phase kick the impurity can then be lifted to
the excited state|1〉. This may be realized by switching back
to the2λ-lattice, exciting the impurity, and then raising the
λ-lattice again.

2. Measurement of a single qubit

All of the applications introduced in the previous section re-
duce to measuring the population of the energy eigenstateρ00
(equivalentlyρ11). Moreover, in Sec. IV A we assumed this
was done via repeated measurement in the energy eigenbasis.

This is indeed possible with a cold atom setup. For exam-
ple, one appropriate technique is a band-mapping variant of
a time-of-flight (TOF) absorption measurement [48, 50–52].
In the above setup theλ lattice is slowly lowered, adiabat-
ically mapping the|0〉 and |1〉 states into the first and sec-
ond Brillouin zones (bands), respectively, of the2λ lattice.
In a second step, the2λ lattice is slowly lowered, adiabati-
cally mapping the quasi-momentum states to real momentum
states, thus mapping|0〉 and |1〉 to non-overlapping regions
of momentum space. Therefore a TOF image of the resulting
expansion measures an impurity in the energy eigenbasis.

Repeating this procedure forM identical copies of the
whole system, the fraction of measurements obtaining the im-
purity ground state provides an estimate ofρ00 with binomial
uncertainty∆ρ00 =

√

ρ00(1 − ρ00)/M .

Appendix G: Master equation for multiple impurities

We consider a system ofM impurity detectors, each
trapped in separate but otherwise identical double-well poten-
tials. We assume, partly for simplicity and partly as it is ex-
perimentally likely, that all the detectors are aligned parallel
to each other, so that the two minima of the potential confin-
ing impurity i are located at the positionsxi ± L. Neglecting
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a constant, the Hamiltonian of the impurities is

Ĥa =

M
∑

i=1

Jσ̂(i)
z .

Making the same assumptions described in Sec. II, we find
that the interaction of the impurities with the gas is described
by the Hamiltonian

Ĥab =

M
∑

i=1

∑

q

(

Mq,01e
iq·xi b̂†

q
+M∗

q,01e
−iq·xi b̂q

)

⊗ σ̂x

+

M
∑

i=1

∑

q

(

M̄qe
iq·xi b̂†

q
+ M̄∗

q
e−iq·xi b̂q

)

⊗ 1,

where the matrix elementsMq,01 and M̄q = 1
2 (Mq,00 +

Mq,11) are defined by Eq. (5).
Under the same approximations as described in Sec. III A,

we derive a Lindblad master equation describing the impurity
dynamics induced by their interaction with the thermally oc-
cupied Bogoliubov modes. This takes the form

∂ρ̂a
∂t

=
∑

i

Li[ρ̂a(t)] +
∑

i6=j

Cij [ρ̂a(t)],

whereLi describes the independent evolution of impurityi,
while Cij describes the dynamics of correlations between im-
puritiesi andj due to their mutual interaction with the spa-
tially correlated reservoir. Explicitly, the local terms read

Li[ρ̂] =− iJ [σ̂(i)
z , ρ̂]

+
∑

s=±

ks

(

σ̂(i)
s ρ̂(σ̂(i)

s )† − 1

2
{(σ̂(i)

s )†σ̂(i)
s , ρ̂}

)

,

where the local gain and decay ratesk± are defined by Eq. (9).
The correlation terms read

Cij [ρ̂] =− iη(ij)[σ̂
(i)
+ σ̂

(j)
− , ρ̂]

+
∑

s=±

Γ(ij)
s

(

σ̂(j)
s ρ̂(σ̂(i)

s )† − 1

2
{(σ̂(i)

s )†σ̂(j)
s , ρ̂}

)

.

The exchange of phonons leads to coherent coupling of
strengthη(ij) between impuritiesi and j, while the rate of
growth of classical correlations between these impuritiesis
controlled by the quantitiesΓ(ij)

± . These parameters can be
expressed in terms of the interdependence function

FD(ω, r) = κ2
∑

q

|Mq,01|2 cos(q · r)δ(ω − ωq). (G1)

Specifically, we have

η(ij) = P
∞
∫

0

dω
2ω

4J2 − ω2
FD(ω, rij),

whereP denotes the Cauchy principal value andrij = xi −
xj , while

Γ
(ij)
− = 2π[n(2J) + 1]FD(2J, rij)

Γ
(ij)
+ = 2πn(2J)FD(2J, rij).

The three parametersη(ij), Γ(ij)
− andΓ(ij)

+ control the rate
at which correlations between the impurity detectors are gen-
erated throughout the detection procedure. In order to ac-
tually evaluate these quantities, one must first carry outq-
summation entering the interdependence function (G1). The
result of this computation is highly dependent on both the
number of spatial dimensions and the geometrical configura-
tion of the detectors. In order to understand this dependence,
it suffices to consider the function

GD(q, r) =

∫

dΩD sin2(q · L) cos(q · r),

which is proportional to the interdependence function (G1)in
the continuum limit. The integral extends over the solid angle
ΩD subtended on the(D−1)-sphere by the momentum vector
q. Performing this integral yields

G1(q, r) = 2 cos(qr) sin2(qL) , (G2)

G2(q, r) ≈ 2π B0(qr) sin
2(qr̂ · L) , (G3)

G3(q, r) ≈ 4π sinc(qr) sin2(qr̂ · L) , (G4)

wherer̂ = r/r. Our expression for one dimension is exact,
however we have employed some approximations in two and
three dimensions in order to obtain more intelligible equa-
tions. In both two and three dimensions we have made the
natural assumption that the impurities are placed far apart, so
thatr ≫ L. In two dimensions we have also made the more
stringent assumption thatqr ≫ 1 over the frequency range of
interest.

By examining Eq. (G2), we see that the growth of corre-
lations is unavoidable in one dimension. This is due to the
fact, peculiar to one dimension, that density waves generated
by each impurity propagate with constant intensity at arbitrar-
ily large distances from the source. In two and three dimen-
sions, on the other hand, energy conservation dictates thatthe
flux of density waves is attenuated over distance, leading to
an asymptotic decay ofGD(q, r) ∼ r−(D−1)/2. Most impor-
tantly, the factorsin2(qr̂ ·L) appearing in Eqs. (G3) and (G4)
indicates thatno correlationsare generated for “perpendicu-
lar” configurations, whenrij · L = 0 for all impurity pairs.
This is because of the angular dependence of the phonon
radiation emanating from each detector, which at large dis-
tances vanishes in the directions perpendicular toL. Likewise,
each impurity does not respond to density waves impinging
from directions perpendicular toL, as demonstrated in Fig. 4.
Therefore, in two and three dimensions, it is possible to create
a one-dimensional array of impurity detectors that can probe
a single realisation of a Bose-Einstein condensate withoutaf-
fecting each other’s measurements.


