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We introduce a detector that selectively probes the phenextitations of a cold Bose gas. The detector
is composed of a single impurity atom confined by a doubld-petential, where the two lowest eigenstates
of the impurity form an effective probe qubit that is coupkedthe phonons via density-density interactions
with the bosons. The system is analogous to a two-level atumpled to photons of the radiation field. We
demonstrate that tracking the evolution of the qubit pojata allows probing both thermal and coherent exci-
tations in targeted phonon modes. The targeted modes aaextin both energy and momentum by adjusting
the impurity’s potential. We show how to use the detectortisenve coherent density waves and to measure
temperatures of the Bose gas down to the nano-Kelvin regiffeeanalyze how our scheme could be realized
experimentally, including the possibility of using an griaf multiple impurities to achieve greater precision
from a single experimental run.

I. INTRODUCTION essential in many uses of cold gases in quantum technologies

Standard techniques to probe Bose gases are time-of-flight
Cold atomic gases play a key role in emerging quantun{TOF), andin-situ phase-contras{_[26] or absorption [27]
technologies, from the simulation of fundamental phyﬂ:s [ imaging @]. From the velocity distribution measured inH O

'] and computatiori [4]5], to time-keepirlg [6]. It is thenaefo  one can infer properties of the underlying state of the Bose

essential that, as well as control, we are able to accuratelgas, in particular, information about both static (e.g.ptera-
probe the properties of atomic gases. Minimally invasivame ture) and dynamical properties (e.g. sound propaga@}) [2
surement schemes are of particular interest, since it @oft However, the achievable precision in, say, a temperatuge me
crucial that this probing disturbs the gas as little as fbssi ~ surement decreases as the nano-Kelvin regime is appraached
With this general aim in mind, we here build on a grow- for example, a precision of 10 % was reported in Ref| [29].
ing body of work, largely theoretical, in which a small quan- Moreover, if the expanding clouds are too dense, TOF imag-
tum system — a probe — is coupled to the system of intereshg is no longer reliabléBO]l.n-situimaging, suitable also for
and then measured in order to extract information about thalense clouds, is inherently limited in resolution by the gvav
system. This has previously been shown to allow the extrac-
tion of information about bandwidth and gaps in the exatati
spectruml[7], non-equilibrium work distributiorld B 9% -
peraturea 1], non-Markovianity [12-14], effectiverii ‘
tonian arameterﬂllS], phase transitidns [16], and theiunr ~ "
effect [17], often in a cold atom setting. The recent surges
in experimental control of such systenﬁgj[—Zl] bring their
realization within reach. = %o
In our case, we consider a weakly-interacting Bose gas de-
scribed by its phononic excitations above a condensate. We (a)
devise a detector to probe coherent and thermal occupation
of a tunable subset of these modes. Detecting coherent ex-
citations of a variety of wavelengths is important, for in-
stance, when Bose gases are used to simulate gravitationalure 1. (Color online) (a) The phonon detector consist sihgle
models [2D], or for the study of dispersive shock waves [23-impurity atom in a double-well potentiaf, with well width o and
@]. Thermal excitations store information about the tempe separatior2Z, and barrier heigh\V. The impurity is restricted to
ature of a gas, and thus selective probing of these acts astfa two lowest states with symmetric and antisymmetric viawe-

thermometer. Obtaining accurate estimates of temperiture tions ¢o and¢:, separated by the energy splittiad. This detector
is immersed in a weakly-interacting Bose gas and acts asoe p(b)

In two and three dimensions, the impurity is trapped by ampatke
that has the same double-well shape in one direction butisdrdc
* ltomi.johnson@physics.ox.ac uk in the remaining orthogonal directions.
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length of light. Both TOF andn-situ imaging constitute a ¢ = 4way/my,, Wherem, is the boson mass andg, is the

destructivameasurement on the Bose gas. boson-bosomn-wave scattering length. At low temperatures
In contrast, the detector proposed here is potentiadly-  the bosons are condensed and it is sufficient to consider the

destructive We analyze the potential and limitations of the excitations, known as Bogoliubov phonons, on top of the con-

detector, showing that, in principle, accurate measurésnendensate wavefunctiofy (r) = \/no with number density.

of temperatures on the order of nano-Kelvin are achievabldn this approximation the Hamiltonian of the Bose gas, up to

and that coherent density waves can be detected even if therconstant, ilel]

wavelength is smaller than that of light.

The detector, shown in Fig] 1, comprises an impurity form- H, = Z wqi)gi)qv )
ing a qubit from the two lowest eigenstates of a double-well a#0

potential. The density-density interaction of the impuend o
bosons translates into a multi-mode quantum Rabi type qubitvhere the operaton] (b,) creates (annihilates) a Bo-
phonon interaction, capable of inducing Rabi oscillatifmes ~ goliubov phonon with momentuney and energywg =
herently occupied modes) and equilibration described tey ra \/Eq(Eq + 29no). Here,Eq = |q|?/2my, is the free-particle
equations (thermally occupied modes). In either case the denergy.
tector’s evolution probes phonon modes of energy equakto th  The functioning of the detector is based on collisions
gubit energy splitting and wavelengths compatible with thewith the background gas, in which bosons are scattered by
distance between the two wells. The sensitivity to différenthe impurity. At low energies, onlg-wave scattering con-
energies and momenta may thus be tuned by judiciously adributes significantly, with the momentum-independent-sca
justing the double-well potential. It is this flexibility Belect-  tering cross-sectiotira?,, wherea,, is thes-wave scattering
ing energies and momenta over a range relevant to the Bosength for boson-impurity collisionsL_[_BZ . We can theredor
gas that is responsible for the success of the double-well immake the pseudo-potential approximation [33], writing &n e
purity as a probe, in contrast, for example, to a qubit formedective impurity-boson interaction potential as
by the internal states of an atom in a single well.

This paper is organized as follows. First, in $&c. Il we intro V(£ —%) = rd(F — %), (3)
duce the detector-phonon system and the model describing it
Second, in Se€_lIl we derive the equations of motion for thevherer andx denote the coordinates of the boson and im-
detector in the presence of both thermal and coherent excit®Urity, respectively. The coupling constant= 2maq;/ms,
tion of the phonon modes. In SEC]IV we then show how trackiS chosen so that the Born approximation applied to Elg. (3)
ing this evolution allows one to measure the temperatufesft Predicts the correct scattering cross-section for coltisiof
bath and to detect the coherent occupation of a mode. FinallyjoW-energy bosons from the impurity.
in Sec[V we discuss how the detector may be implemented Within the pseudo-potential approximation, the effective
experimentally, focusing on simultaneous measurements uéteraction between detector and the Bogoliubov phonons is
ing multiple impurities, before concluding in SEC]VI. Diiga  described, up to a constant, by the Hamiltonian
of our analysis are left to the appendices. . .

Hay = B ® )],

v
II. MODEL
where u,v € {0,1} and the operator elemeni8,, =
Our detector consists of a single impurity atom of spegies « Zq;éO(Mq,WISL + h.c.) are written in terms of matrix ele-

confined by a double-well potentit], (cf. Fig.[1). We assume mentsi/, ., specifying the detector-phonon coupling. Under
that the impurity constitutes a qubit formed by the groundthe same approximations as used to obiairand A, with the
and the first excited states of the potentj@aj,and|1) respec-  additional assumption of a weak couplingve find [31)34]
tively, with corresponding wavefunctionrs (r) = (r|0) and
gbl (r) = (r|1). Th_e tunneling between the two wglls results Ma,w = Sq /dr by, (1) (x) el
in an energy splitting o2.J between these energy eigenstates.

The Hamiltonian of the detector reads
with Sq = /noEq/Vwq andV the volume of the Bose gas.

Ho = Jo, (1) The pseudo-potential approximation is valid if any exci-
where the population inversion is represented by the usudhtion to higher vibrational states of the impurity can be ne
Pauli matrixg, = [1)(1] — |0)(0|. We use units withi = 1 glected, and if the initial wave-vectey of the scattered atom
throughout. satisfiesgrg > 1, wherer, is the effective range of the po-

The dilute Bose gas is composed of bosons of spdgies tential. The range is expected to be on the order of the
and confined by a shallow potenti&},, so that the gas is scattering lengtla,, [@]. Note that, due to the presence of
practically homogeneous on the length scalef the impu-  the impurity trapping potential, the lengily, may differ from
rity. The bosons interact weakly with interaction strengththe bare impurity-boson scattering Iendj._h| [@ 37].
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Figure 2. (Color online) (a) Dependence of the energy smiitt

2J/w, according to Eq[{4) as a function of (a) the relative well-sep
aration/, and (b)L ando in terms of the natural Bose gas length
and energy scales, the healing lengts 1/,/mygno and chemical
potentialgng. The shaded region in the bottom right corner is inac-
cessible since here < ¢. The other parameters for both plots are
D =1,mq =05m, andAV/w, = D.

A. Symmetric double well in the harmonic approximation

3

The difference between the diagonal matrix ez)lements is neg-
ligible when? > 1 since Mg o0 — Mg11 ~ e~* . We may
therefore re-express the interaction Hamiltonian in thggme

as

Huypy = Bio®6, + Boo® 1. (6)

The full Hamiltonian described by Eqd.] (10)] (2) ahdl (6) rep-
resents a multi-mode quantum Rabi model, which forms the
basis for all of the following analysis. The operator ele-
ments areBiy = k(i — fig) and Byy = k(L + fg),
wheren, = [dr|é(r + L)|*a(r) is the density deviation
A(r) = Y40 Sq(e97b], + h.c.) of the Bose gas fromy,
averaged over the left well, anidk is similarly defined. The
Hamiltonian in Eq.[(B) describes the coherent driving of the
qubit by the difference between the boson densities at the tw
wells.

As we explain in detail in subsequent sections, the detec-
tor is sensitive to phonon modes whose energy and wave-
length approximately coincide with the corresponding gper
and length scales of the detector, nam2ly; L ando. In
App.[Awe describe a possible experimental realization of ou
detector. There we demonstrate that a broad range of frequen

The properties of the detector are determined by the qubfies and momenta may be accessed by modifying the impurity

wavefunctionsy,, (r), which are in turn determined by the
shape of the double-well potenti&],(r). From here on we
consider tractable types of potentid|(r) and approximate
wavefunctionsp,, (r) that enable us to analytically study the

trapping potential’, within the limits of what is possible us-
ing current technology. Importantly, we find that the double
well impurity detector is sensitive to the normal energy and
momentum scales corresponding to a typical Bose gas, but

dependence of the detector on its potential. Note that the agan also probe a much broader spectrum of frequencies rang-
curacy of the detector itself does not rely on the accuracy of"d from several Hertz up to values on the ordet@d kHz. In

this assumption.

Explicitly, we consider a deep symmetric potential with a
local maximum atr = 0 and two minima ar = +L such
that the qubit states are approximately described by synunet
and antisymmetric superpositions of Gaussian wavefungtio
o(r) = (mo?)"P/exp(—r?/20?) of width o = 1//maw,
centered at the respective double well minima +L. Here

Bose gases, the lower limit corresponds to nano-Kelvin tem-
peratures, while the upper limit corresponds to phonon mode
with sub-optical wavelengths. Our proposed detector there
fore could enable the measurement of very low temperatures
(at the low frequency extreme) or short-distance densityava
tions (at the high frequency extreme), which are difficultgto
solve by alternative means. In the examples which follow we

m, is the mass of the impurity. In this case the energy splitting™@inly focus on these extreme cases, since they most aptly

2.J between the qubit states obeys [38]
el

(ChR

where/ = L/o. This is shown in Figd.]2(a) and (b) with
respect to the detector and Bose gas length and energy,scal
respectively.

The excitations to higher vibrational levels of the double
well potential can be neglected in the regime whéfe, <
1. SinceJ/w, decays exponentially with this qubit regime
can be readily achieved.
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For these wavefunctions, the interaction matrix elements

become
Mq701 = ]\/[q,lO = —iSq sin(q . L) e_”2q2/4 5
Mq700 = Sq[cos(q . L) + e—fz} e_02q2/4 ,
Mg11 = Sq[cos(q- L) — e*ﬁ} S

()

illustrate the capabilities and limitations of the detectd/e
also use that coherence times of the detector of more than 10
ms are readily achieve40].

Ill.  EVOLUTION OF THE DETECTOR

es

In order for the detector to probe the Bose gas it must inter-
act with it for a timer and then be measured. The operation
of the detector is determined by how the reduced density op-
erator of the impurity,, (¢t) = tr,{5(¢)} evolves, with

£2Palt) = =3l (6] — i trs ([, P}, (D)

the equation governing this evolutiofi;t) the density oper-
ator of the total system and,{ - } the partial trace over the
states of the Bose gas. In the following we solve E§. (7) in
different approximations to determine the effect of diffier
states of the Bose gas on the detector.



A. Damping by the thermal phonon bath 2.5

To start with, we analyze how the double-well qubit re- ¢
sponds to thermal fluctuations of the Bose gas. The appropri- & | _
ate tool for describing the evolution gf is a quantum master §
equation in Lindblad form, derived under the standard Born- 2 [~ N ]

Markov and rotating wave approximatiohs|[41]. This equatio i ]
takes the form ARSI S, Sy At O
0 Lz e ! it
Aa t Fy 1 AT A ~
Do) — ittt 3 ks (0000l g 000 p0}), O w/gmo !
ot = 2
(8)

wheres,. = 1(61 +i6,,). In writing Eq. [8), the small renor- Figure 3. (Color online) Spectral densitigh (w) in the linear

2 . _ .
malization (Lamb shift) of the detector energy levels due to®9ime [Ed.[IR)] forD = 1 (green solid), 2 (red dotted), 3 (blue
ashed). The detector parameters usedoate ¢, L = 5¢ and

the coupling with the gas has been neglected. The final ter V' — w,, the detector-Bose gas couplingss 5 g, and the Bose

in Fhe equation describes stoghastlc transitions betwepua-p gas density10e? = 1.
lations of the detector, occurring at the rates
k- =2n[n(2J)+ 1)JIp(2J), ©) characteristic frequencieg, = ¢/L andw, = ¢/o, we then
ki =2mn(2J)Jp(2J), obtain
2
K

wheren(w) = [exp(w/kpT) — 1]~! is the average number  J1(w) = wsin® (w/wy )e~ 3@/w)”

of phononic excitations of energy. The spectral density is 2mge
given by Dolw) = 8:—9202& 1 = Bo(2w/wr)] e 3@/ (12)
Ip(w) = &%) [ Mg0*8(w — wq)- (10) )
a0 Ts(w) = 87;;?403 1 — sine(2w/wy)] e 2 @/wn)?

The evolution according to the master equatibh (8) ha
the favorable property that populations and coherencgg of
evolve independently, as

?—Iere,Bo(:v) is a Bessel function of the first kind. The detailed
low-frequency shape of the spectral density depends on the
frequencywy,, which is set by the well distance, whereas the

, high-frequency cut-off is determined by;.
kil —ome | ke ) e . .
p11(t) = |p11(0) — % € + o 11 Figure[3 shows the spectral densities for different dimen-
- (11) sions, evaluated in the low-frequency approximation. Rer t
p1o(t) = pro(0)e™ ) one-dimensional Bose gas, the spectral density exhibits se
. _ _ eral maxima and vanishes periodically between these. The
wherek = 3(ki + k_) is the average rate, whilg,.(t) =  qubitis thus completely decoupled from the Bose gas for spe-

tro{pa(t)|p)(v[}, with p,v € {0,1}, are the reduced den- cific values of the energy splittirgy/. The origin of this struc-
sity matrix elements. We see that the coherenggsf the  ture is energy and momentum conservation, which in one di-
double-well qubit decay exponentially due to the inte@Tti mension depends strictly on the matching between eneygy
with the thermal phonon bath. Accordingly, in the long-time and momentung of the phonons and the energy splitting
limit, the qubit evolves towards equilibrium with the phano and sizel of the detector. For a two- and three-dimensional
bath, while the coupling strength remains unchanged. Thagpse gas, the structure of the spectral density is significan
is, the qubit evolves towards a mixed state with asymptotigess pronounced. In this case, the momentypnojected onto
populationspoo = k—/(k4 +k—) andpi1 = ky/(k+ +k-)  the direction of the detectds is the relevant conserved quan-
and vanishing coherences), which correspondsto a thermal tity and phonons impinging on the detector from different an
state of temperaturg. gles can always fulfill energy and momentum conservation.
To give some insight into the characteristics of the equi+or use outside the sound-like regime, we have evaluated the
libriation process, we evaluate the spectral density (0) i spectral density using the full Bogoliubov dispersion tieta
the regime of large impurity widths > &, where( = in App.[B.
1/\/mygno is the healing length of the Bose gas. In this To conclude this section, we briefly discuss the range of
regime we can replace the Bogoliubov dispersion relatiovalidity of the master equation. The Born-Markov approxi-
with its low-frequency approximationg = c|q|, with c = mation is valid so long as the dissipative evolution induced
v/ gno/m; the speed of sound. In addition, we take the usuaby the bath occurs slowly compared to the thermal corredatio
continuum limity =" 3>, — (2m)~" [ dq. Interms of the  time of the bath, i.ek+ < kpT. The spontaneous emission



ratek_ must also be much slower than the vacuum correla- 4 —r—————— 1 0d—T—TT7
tion time r,,, corresponding to the inverse of the bandwidth |- (a)— b)
of Bogoliubov frequencies that interact appreciably wiik t |

impurity. The vacuum correlation time can be estimated as | /\
T, &= o/cwheno > &, or 7, ~ myo? wheno < £, Finally, %2

the rotating wave approximation is applicable only if the co = [

herent evolution is significantly faster than the dissipaévo- \/
lution, i.e.J > k.. Inthree dimensions, typical values of the

relevant parameters arg ~ 150 us and1/kgT ~ 10ms at I T T B T 0 04— T 1
T = 1nK for an impurity size ofr = 100 nm. Hence, for A Dy & 4 20.25 Q. /910 0.25
Bose gas lifetimes on the order tf all requirements can be

readily fulfilled.
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Figure 4. (Color online) The detector in a two-dimensioretup
with m, = 0.5myp, AV = w,, 0 = 0.1/|p|, andL = 0.27 p/|p|?
B. Driving by coherent phonons is tuned close to resonance with a mode with the wavevester
3y/¢ along the y-axis. (a) The amplitudé = Q2 /Q32 of coher-

Next, we assume that the detector and the Bose gas, dggt oscillations exhibits a clear dependence on both magmiand

. N A . irection ofp = (pz, py), i.€., the direction and energy of the den-
Scnﬁe.d bypb(f)’ ir.e not.corrélate(?j Sq th'él(t;) = Pa(t)®Ps(t) sity waves. (b) Angular dependence of the Rabi frequécyn the
atall timest. In this regime Eq [{7) simplifies to direction ofp. The other parameters (for both plots) are= 10 g,

Opa . A A |Bo| = 5,n0&? = 0.5, andV = (100 £)2.

ot (t) = —i[Ha + Hus (1), ha(t)], (13)
where we have introduced the mean-field Hamiltonianspecific example of the dependence of the oscillation ampli-
Hypp (t) = trp{ po(t) Hap }- tude and frequency op is shown in Figd4(a) and (b).

The mean-field approximation does not account for quan- For the more realistic case that coherent occupation occurs
tum f|uctuati0ns, but it is very suitable for describing expe in Bose gas modes with a W|dthof frequencies aroun{dp’
iments with the phonon modes in coherent states. This SitUgther than a single mode, the impurity dynamics is given by
ation occurs naturally when a classical potential acts en thg coherent superposition of Rabi oscillations with frequyen
Bose gas, e.g., a laser beam![42] or the density of an imspready. These oscillations will go out of phase after a time
purity [43]. More precisely, for a Bose gas prepared in they /4 and thus will be visible ify < $2,. Assuming this to be
statepy(t) = |Bp(t))(Bp(t)| with a single phonon mode of  trye we hereon discuss only the single mode case.
frequencyw;, occupied coherentlyq|Sp) = dpqfp|Bp), We Note that Eq.[[Z8) is complemented by an equivalent ex-
obtain the mean-field Hamiltonian pression with the roles of the detector and the Bose gas inter
changed, which leads to higher-order corrections in theadet
tor evolution. However, we assume that the evolution of the

which recovers the Hamiltonian of the classical Rabi modeinitia! state of the Bose gas,(0) according todpy (t)/0t =

with resonant Rabi frequendy, = 2x|M;; ;08| and initial —i[Hy, py(t)] dominates over the back-action of the detec-
phasef, — arg(8,M;,,). Making the rotating wave ap- tor. In _App.ID we show that th|2$ ass.umptlon is Justn‘l(_ed in
proximation, valid near resonang,, |0,| < wp + 2.J, with the regime wherél, /w, < [fp|*. This places a practical
5, = wp—2.J, we find coherent Rabi oscillations at frequencyhmlt onthe ampl_|tude of coherentdensn_y_ oscillationst tben

Qp _ (Qf) + 512))1/2_ Specifically, the expected population of be measured with our detector. Specifically, we must have

the ground statgg (), given that the detector started in this {%p < @p in order for the rotating wave approximation to
statepoo(0) = 1, is found to be hold, therefore the back-action of the detector on the gas ca

be neglected if3,|? > 1.

Honf (1) = Qp cos(wpt — 0p)5

&2 02 Qpt
poo(t) = =2 4+ =2 cos? (—p ) (14)
a2 oz 2

C. Coherent driving in the presence of incoherent damping

The amplitude of oscillations in the populatio}f)/fzf) is
near maximum when the detuning is small compared to the Naturally, some thermal excitations will always be present
resonant Rabi frequency, .6/}, < 1. On the other inthe Bose gas and they cannot necessarily be ignored, as we
hand, the amplitude is near zero in the off-resonant caskave assumed in S€c. 11l B. The full equation of motion for
dp/Qp > 1. Conservation of momentum and energy leadsp,, including both coherent driving and dissipative effeis,
to a non-trivial angular dependence of the Rabi frequencynalogous to the optical Bloch equations describing adaser
Qp = Qp(p,L). Hence the detector is not only sensitive to driven two-level atom damped by the free radiation field (at
the energy of the incoming waves but also their direction. Afinite temperature), but in the context of cold atoms.



Following this analogy we may express the state of the de- A. Measuring the Bose gas temperature
tector in terms of the Bloch vectar whose components are
given byv; = tra{pad;} withi = x,y, z. The resulting Bloch We first show how the detector can be used to measure the
equations in vector form read temperaturel}, of the Bose gas in the nano-Kelvin regime.
dv - We present two different methods) anequilibrium method
i b x v — kc, (15)  and(b) anon-equilibrium methogkither of which is capable

of accessing low temperatures as lowlgsx 2J/kg, which

whereb = (Qg4,0,54)7 acts as an effective magnetic field can be lowered into the nano-Kelvin regime.
andc = (vg, vy, 20, — 200)T, with vg = (ky — k_)/ (ks + a. Equilibrium method. A conventionalthermometer re-
k_) the long-time asymptotic population inversion. In the lies on the measurement of the population after full equili-
fully coherent case withk = 0 the solution of the Bloch bration with the environment. To use the double-well qubit
equations[(15) reduces to the Rabi oscillations descrilyed bas such a thermometer it is first allowed to come to equi-
Eqg. (I34). The general analytical solution of Hg.l(15) is pre-librium with the Bose gas, then the excited-state poputatio
sented in ApaD. p11 = k4 /(ky + k_) is measured. Knowledge of the pop-

It follows from this solution that the double-well qubit in ulation p;; and the splitting2.J is therefore sufficient to de-
the presence of both coherent near-resonant driving angd-damtermine the Bose-gas temperatie The advantage of this
ing acts very similarly to a classical receiver for electemn method is that it does not rely on the physics specific to the
netic waves, i.e. a damped RLC circuit, that is tuned in ressystem whose temperature is being measured. Specifically,
onance with a particular frequency. As such, a key quantitghe accuracy of the thermometer does not rely on the accuracy
in determining whether there will be visible Rabi oscilkats  of the Bogoliubov description of the Bose gas.
is the Q-factorQ = €, /2k relating the resonant Rabi fre- A precise measurement @f using this method requires
quency to the thermal decay. In the sound-like regime &, thatn(2J,Ty) ~ 1, or equivalenth2.J/kpTy ~ 1, so that the

the Q-factor populationp1 (Tp) is sufficiently sensitive to the value @.
This means that it is possible to measure temperafllyem
©= ( o > < o > sin(p - L) efazp2/47 the order of2J/kp. More specifically, in App_E we show
2n(2J) +1 2mJp(2J7) that the uncertainty in estimating (¢) using M measure-

ments of the state of the qubit in the energy basis contribute

is significantly increased when the spectral dengity(2.J) an uncertainty\ 7, when measuring, obeying
0 0

is near one of its nodes. As a result, counter-intuitivelg, w
find that coherent oscillations are often clearest whentiét g
energy2.J is detuned away frony,, towards smallet7p (2.7), ATy _ 1 [ksTo (2n(2/. To) +1)(n(2J, To) + D'
even though, as shown in SEC.TlI B, this reduces the maximumZ0 VM | 2J e2//keTo[n (2., Ty) /2
oscillation amplitude2 /O3

The other effect of damping is that the full width half maxi-
mum of the amplitude as a function of frequency gains a con-
tribution ~ k = Q,/2Q due to lifetime broadening, in ad-
dition to the usuak,. A low @ transition is thus slightly
easier to drive away from resonance.

(16)
The uncertainty ATy, has a global minimum of value

IV.  APPLICATION

P11
P11

In Sec[Tll we saw that a double-well qubit evolves in re-
sponse to phononic excitations in the Bose gas, both thermal
and coherent, of energy close 2d, which can therefore be 0 ' ' ' 0 L L1

. . t t
tuned to focus on modes of interest. This allows the mea- 0 gno 40070 gno 25
surement of the average number of coherently and thermally

excited phonons present in these modes. Figure 5. (Color online) Simulation of the temperature niees
We focus on two examples of how our detector may be useghent in two dimensions under ideal conditions using theasfre-

to probe the Bose gas non-destructively. The first is the-acClsented in TablElI. The detector is initialized in its excitelte|1)
rate measurement of the average occupation of phonon modesd evolves according to EG_{11). The fictional measurepeints

of energy2.J, from which the temperature of the Bose gas(green) are distributed around the expectation valuét) accord-
can be inferred. The second is the detection of coherent deimng to a Bernoulli distribution obtained fro5000 measurements at
sity waves in the Bose gas. In both cases we show how theach of the50 points. The corresponding plots show the decay of

parameters of the detector can be chosen to obtain reliablf® PoPUlatiorp:. () for temperatures (o = 0.5 gno/k and (b)
measurement results. . ‘ T1 =10 gno/kp, resulting in the markedly different decay times.




D|kpTo/gno ksTi/gno no&”|o/€ L/ J/gno  |k(To)/gno k(T1)/gno||(ATo/To)eq| (ATo/To)non-eq.

1| 0.01 1 105 153.21-1072(2.16-10"% 2.08-1072|| 4.64% 1.67 %
2 0.5 10 5101 0.271.22-107%|5.74-1072 1.12- 107} 5.96 % 0.86 %
3 5 100 20 [0.01 0.036.17-1071(2.07-1072 4.12-1072| 11.5% 0.59 %

Table I. Parameters and relative uncertaintidgy /Tp )eq. for the equilibrium method according to EG.116), &@8iTy /7o )non-eq.fOr the non-
equilibrium method as obtained in a simulation of the shasaéor the temperature measurement under ideal condi(g@esmain text and
Fig.[H), whereM = 5000 measurements are performed to estimate the populatigi) for eacht and¢ = oo for the equilibrium method.
For all cases we s&t = (100 £)”, k = 15 g, AV = Dw, andm, = 0.5 ms,

~ M~1? at2T, ~ J/kp and diverges a%, becomes very quantity in square brackets is on the order of unity for
large or very small, which is consistent with the above esti-2J/kgT, ~ 1, but rises quickly for smaller temperatures.
mate2J/kgTy ~ 1. Note that the detector parametdrand o, while keeping

b. Non-equilibrium method. The temperatureisnotonly 2.J/kpT, fixed, can be tuned such that the spectral density
revealed by the equilibrium populations, but also by how the7,(2.J) and the decay ratds. result in the desired temporal
populations decay to equilibrium. Thus another approath is resolution. In particular, the incoherent evolution of thebit
initialize the double-well qubit in statg), observe the decay can be made sufficiently slow for the Born-Markov approxi-
of the population;; towards its equilibrium value and extract mation to be valid, or fast enough to be within the coherence
the temperature-dependent decay rat€), from which the  time of the qubit.
temperature can be deduced. To avoid any sensitivity to the To illustrate the measurement process for the non-
precise values in the impurity-Bose gas or Bose gas Hamilequilibrium method, we have simulated the shot noise result
tonian, beyond the assumption of a continuum of weaklying from a finite number of measurements during an ideal
interacting bosonic modes around enefgly we in fact ex-  experiment to determing, ~ 1 nK, with a reference tem-
tract the decay ratelg(T") for two temperatures. The firstis a peraturel; ~ 100 nK. For the Bose gas and impurity pa-
(high) reference temperatufg and the second is an unknown rameters presented in Tafle | we obtain relative unceigaint

temperaturdy < T, which we determine from the ratio ATy/Ty < 1 % after takingM = 5000 measurements at
_ each of the 50 time points. An example fbr = 2 is de-
k(To) _ 2n(2J,To) +1 (17)  picted in Fig[b. Likewise, under the same ideal conditions
k(Tv)  2n(2J,T1) +1° and parameters, the uncertainties for the equilibrium oteth

according to Eq.[{16) assuming full equilibration and takin
M = 5000 measurements at®T, /T, < 10 %. Hence, using
either method, it is, in principle, possible to preciselyasere
temperatures in the nano-Kelvin regime.

given the values off’; and2.J. This process of measuring
temperature by observing decay rates, rather than equitibr
populations, differs fundamentally from a conventionarth
mometer.

The non-equilibrium approach requires many measure-
ments in order to obtain a sufficiently precise estimatg;of
at multiple times. However, it also has the advantage that al
measurements can be carried out within a time much shorter
than the equilibration time. Moreover, if the temperatiuge i

very small, whence the equilibrium value pf; becomes h _ h densi
small, the equilibrium method is very susceptible to system B0S€ gas. As shown in Séc. T B, a coherent density wave

atic errors in the population measurement, as well as rgaatin'nquces coherent oscillations of the detector, damped by co
due to fluctuations in the double-well potential. Since éarg pling to the thermal background. We have already shown that,

values ofy, are obtained during the non-equilibrium schemef©" these oscillations to be clear, we must have that the Q-

for measurements at small times, this method is less Sliscep{acwr Q = QP_’/% IS larger than or on the order of unity,
ble to such errors. and the detuningy, is on the order or smaller than,. We

A precise measurement @ using the non-equilibrium add here an additional requirement from the practicality of
method requires that/ k5 Ty < 1, 0rn(2.J,Ty) > 1. Specif- observing oscillations within a reasonable time-scaleyelg
ically, the measurement uncertainty for the valudpising € fesonant Rabi frequen€y, has to be not much smaller
the non-equilibrium method (derived in Aplpl E) scales ap-,th"?‘n the natural Bose gas frequ.ency sgalg, which for real-
proximately as istic experimental parametejs, is of the order of 1kHz|E4].

This last requirement amountspo < 1, and thus limits us

ATo 1 [kgTy 2n(2J,Tp) + 1 to wavelength&x /p on the order of tens of nm or larger.

To ~ VM | 27 2v/2In(2)e2//ksTon2(2.,Ty) ] In Fig.[@ we show examples in one and two dimensions
for which it is possible to simultaneously meet all of these
In accordance with the above estimaé/kpT, < 1the requirements and observe oscillationggf(t). In both cases

~

B. Detection of coherent density waves

We next show how to detect the coherent occupafiyiv
of a given modep on top of the thermal fluctuations of the




1 T T T 1 I I I lower frequencies being much improved.
- (a)] L\ (b) . : s .
~ _/\ ~ Finally, note that if one is interested only in whether or not
z /\/‘\\/\; z B /\/\_____ a given mode is occupied, the mere presence of oscillations
5 \/ 7] gl 7] yields sufficient information. However, scanning through t
| | L | | L] resonance should, in principle, yield enough data to deéterm
0 0 t gno 2000 both the energy of the mode occupied (from resonant frequen-
| | cies), the axis along which its momentum is directed (by ob-
(d)- serving the dependence of oscillation amplitudeIgn and

— its occupationifp|? (from the shape of the resonance and the
- frequencies of the oscillations).

0 | | | 0 | | |
—5% 2J +5% —5% 2J +5%
8.1 | | | 2.5 | | | V. PARALLEL MEASUREMENTS
. (e)] B ()]
o \ SL _ It is of course always necessary to perform multiple mea-
- | | | | | surements in order to obtain estimates of the impurity qubit
7.8 2.2 ; - ; P
5% 2] +5% “Zr9 2. +5% populations that are sufficiently precise for the desirealiap

cation of the detector. Realizing the whole measurement pro

cedure (creation of Bose gas and detector, evolution and mea
Figure 6. Detection of a coherently occupied phonon modé wit surement) a large number of timég results inM indepen-
|Bp| = 5 and frequencys, = 10 gno in one dimension (left) and dent measurements of the impurity in the energy eigenbasis
two dimensions (right). The detector is tuned close to rasoe such  and thus provides an estimate of the excited state populatio
that2J = wp. The resulting oscillations gy (solid blue) andp11 p11 With binomial uncertaintyApy; = +/p11(1 — p11)/M
(dashed green) (2) in one dimension with Q-facfor= 7.93 and  (gee AppEEQ)|I4|5]- However, it is more economical to per-
(b) in two dimensions with) = 2.32 are clearly visible. Panels 5:m A7 simultaneous measurements of the stated/odif-
(c) and (d) show the sensitivity of the o.scillation. amp]'mu(i;olid ferent impurities interacting with the same single redioa
blue) on changes d&f.J away fromwy, realized ad. is varied away .

of the Bose gas and use those results to estimate

from its near-resonant value, andfixed. Panels (e) and (f) show ; S -
the dependence of the Q-factor upon the same changgs ifhe A crucial question is whether in the latter case the state of

values of2J corresponding to those chosen for the examples (afach impurity is unaffected by and independent from the oth-
and (b) are indicated by the vertical dashed green lines. spee  €rs, thus ensuring that the precision and accuracy of the com
cific parameters of the Bose gas in 1D &re= 0.01 gno/kp and  bined measurement scales in the same way as for multiple de-
no& = 1;in 2D we setl’ = 0.1 gno/ks, no&> = 10. The system  tectors, each interacting with its own separate realinatib
volume ist set ta) = (100£)”. The parameters of the detector in the Bose gas. Neglecting direct interactions of the detscto
1D arex = 0.59, 0 = 0.3/|p|, L = 0.62/|p| and in 2D we set  py assuming non-overlapping well-functions, we need only
K =2g,0 = 0.05/|p|, L = 0.14415/|p|. The impurity mass is jnyestigate the interaction of the detectors via the Bose ga
Ma = 0.5my, and the barrier heigh\V = Dw, in both cases. In the following, we examine this problem separately for the
cases of incoherent damping due to thermally occupied Bo-
goliubov modes, and oscillatory driving due to coherendy o
the detector is driven by a coherently occupied high-energgupied modes. We will focus on the most promising set-up,
mode with frequency, = 10 gno, whichforD =1 (D =2)  namely a linear array of double-well potentials, in combina
typically corresponds to a wavelength on the ordepgf~  tion with a preparation and measurement scheme as described
100 nm (A\p ~ 1 um). in App.[H.
The examples also illustrate the main limitation of our de-
tector as a detector of coherent density waves. Fop, 1
the width of the resonance is of the ordeg and thus the

fraction to which2.J must be tuned close toy, is of the or- . : o :
der Q) /wp. For increasingly largev, /gno this fraction be-
comes very small, 88, remains on the order @fn or less.

a—-»

The situation is worse for highdp. The sensitivity with re-
spect to2.J is illustrated in FigdJ6(c) and (d) for one and two
dimensions, respectively. Conversely, the Q-factor isswot
sensitive to the value di.J, as shown in Figd.16(e) and (f),
but remains close to unity. Coherent density waves with freFigure 7. (Color online) If an array of impurities with laté vectora
guenciesu, = 10 gng are thus at the upper end of what could iS arranged such that- L = 0 and|a| > L, no Bose gas-mediated
be realistically detected, with the sensitivities apdactors at ~ correlations between the impurities can arise.
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In the case of incoherent damping, our Born-Markov ap-find that the back-action of the detectors is negligible ssle
proach for a single impurity can be extended to describe ther(n — 1/M) < p-a < 27(n + 1/M) for some integen,
dynamical generation of correlations between the impgiti a situation that is easy to avoid in practice by choosing the
This is done in Appl_. The impurities affect each other inlattice vectora appropriately.
two distinct ways: a direct, coherent interaction medidigd It follows then that using an array of many double-wells,
the exchange of phonons, and an indirect, incoherent growtWwhere numbers in the thousands are easily achievable, we can
of classical correlations due to their mutual interactiathw obtain accuracies corresponding to a large number of mea-
the background gas. Both of these effects are strongly depesurements in the time it takes to perform a single measure-
dent on the geometry and the number of spatial dimensionsnent, and, in principle, without destroying the state of the
This ultimately stems from the directional dependence ef th Bose gas being measured.
phonon radiation emanating from each double-well impurity
which is strongest in the direction parallelkg but vanishes
(at large distances) in the directions perpendiculdz.td his VI. CONCLUSION
is entirely analogous to the directionality of the sound ema

hating from a classical acoustic dipole. Quantum probes in general and localized atomic impurities
In two or three dimensions, it is possible to place an arrayin particular offer an alternative way of probing many-body
of double-well impurities separated by a lattice veet@uch  quantum systems, with the potential to be non-destructive.
thata - L = 0 and|a| > L (see FigLlr). The generation of Specifically, probing phononic exciations is important, éa-
correlations between the impurities is completely supgees ample, to measure temperature, and in the context of the sim-
in such an arrangement. In any other configuration, both thgjation of gravitational models and shock-wave formation.
direct and indirect interactions decay slowly with distaibe-  Here we have shown how to make use of the versatility of
tween the impurities, asymptotically as(?~1)/2, the double-well qubit to probe the phononic excitations of a
In contrast, in one dimension, the impurities are conséiin  weakly-interacting cold Bose gas. We have shown that, due
to lie along a line parallel td,; furthermore, both the direct to the ability to localize the probe to tens of nhanometers or
and indirect interactions do not decay with distance. Theretune its resonant energy down to the nano-Kelvin regime, it
fore, the correlations between impurities cannot be négdec provides a flexible alternative to other probing techniqdes
in one dimension. In configurations where correlations arexample, imaging with light. Our technique has the addélon
important, a more detailed analysis would be required in orbenefit of being potentiallpon-destructiveln an experiment,
der to interpret experiments using multiple detectors ima s a suitably aligned array af/ ~ 1000 double wells allows the
gle realisation of a one-dimensional Bose gas. This armlysiuser to realize many independent detectors simultaneously
could in principle be carried out using the microscopic equa A major part of our proposal involves monitoring the non-
tion of motion presented in App]G. Note that the orientationequilibrium dynamics of the impurity in order to infer prop-
required to minimize correlations, i.ea, L L may conflict erties of the Bose gas. This approach relies on, and is thus
with some readout schemes, such as the band-mapping TQaly as accurate as, the Bogoliubov description of the Bose
image described in App.F 2. In this casél L is the optimal gas. More generally, deviations of the detector from the ex-

configuration([46]. pected behaviour may be useful for exploring the limits ef th
Now we consider the case where multiple detectors interBogoliubov description. _ _
act with a Bogoliubov mode in the coherent statg). To We have focused on the use of the impurity as a probe that

the order of approximation considered, the mode in questiomeasures the occupation of certain phonon modes. If the oc-
remains in a product state with the impurity detectors. her cupation of these modes is known by other means, the probe
fore, to the same order of approximation, the impuritiesaio n could also measure the density of states of the Bose gas at a
become correlated with each other via their mutual intésact  specific energy. We also note that this same system may be
with this mode. Nevertheless, the impurities could stilhco used to absorb and thereby remove specific excitations from a

ceivably affect each other via their back-action on theestt ~ phonon environment.

the gas.
The effect of each impurity on the Bose gas is to generate
additional phonons. If the number of extra phonons is small ACKNOWLEDGMENTS
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Appendix A: Experimental realization of the detector face of the unit sphere i dimensions, we find

% _
A one-dimensional array of double wells can be created by Jp(w) :HQW /dq5(w —wq)g” /dQD|Mq|2

an optical lattice potential B 5 _
2 Mo 7(wq) Wa
=k*—= [ dwgd(w —wq) —= | —
" an)P / wadlo —wa) =, < dq )

2
V(r) =V {COSQ <ﬂ) ~dveos (m)] -
i X w e~ 1(wa)’0?/2 / dQpsin®(q- L),
D 5
"d
« [1— exp ( 2(;2 wg)] , Hereg(wq) is the inverse of the dispersion relatiog and the

angular integrals read

which is obtained by superposing two pairs of laser beams 9gin2(al,
with wavelengths\ and \/2, respectively, and beam widths 9 sin”(qL)

w [40,148]. The well separatiodL, curvaturew,, and sizes /dQD sin”(q- L) = q w1 = Bo(2¢L)]
of the barriers inside and between the double wells are-deter 2n[l —sind2qL)] D =
mined by the relative intensityv of the two lattices. Specifi- . ) . )

cally, asv goes fromD to 1, the well separatio@L goes from Exp_I|C|tIy inserting t_he expressions for the inverse arelih-
A/2 10 \arccos(v) /27 ~ A/2 (1 — 2v/7), curvatures, from  cobian of the Bogoliubov dispersion,

(27 /N)\/2Vy/mg 1o (21 /N)\/2Vo(1 — v2)/m,, double-well

barrier heightAV from V4 to V; (1 — v)2, and inter-double- Eqw)* =2 (1 +v1+ (W/gno)Q) ,
) ) 5 . -

well barrier he|gh.t fromlg to Vo (1 + v)=. Choosingv < 1 L Owg Eq + gno
therefore results in an array of separated double-wellsh ea (€gmo) e &q )
with L, w, andAV on the order of\, /2Vy/ma\2 andw, 9 a
respectively. the spectral densities read

It follows then that using typical experimental parameters )
Vo < 102 E,, mg ~ 10>amu andw, A ~ um, with £, = Ji(w) :(“/9) 1 Eq) eféq(w)%ﬂ sin? (g(w)L)
472 /2m,\? the recoil energy, it is possible to achieve spatial gno g q(w)§ Eqw) + 29n0 ’

scales as short as ~ 10nm and energy scales as high as 2 E,. 1 e
wa /21 ~ 100 kHz, respectivelyl[49]. At the opposite end of jigw) 22(:7/19)52 7 C"J(r; —e 29777 1 — By(2¢(w)L)] ,
the spectrum, using a shallow lattice depth~ 1 E,, m, ~ Jro 0 ) aw) T 2gN0

10 amu ando, A ~ 10um, one may achieve spatial scates: 73 (w) _ (£/9) ( Eyw)

1 um and energy scales, /2 ~ 1kHz. Itis also possibleto 970 2m*no&? Eqw) + 2910

simultaneously realizé < A\, w and thusAV/w, ~ 1 while L )262 .

exploring a broad range df/o for which 2J i/s smaller than x e 27 [1 = sind2q(w)L)]
or the same order as,.

Fluctuations in the individual and parallel intensity and  appendix C: Back-action of impurities in the mean-field
phase of the lasers creating the two lattices cause the slepha approximation

ing of the impurity. For example, in ReEBO] it is reported
that frequency fluctuations between the lattice lasers atou
ing to < 100 kHz result in fluctuations of the bias between
the wells|V, (L) — V,(=L)| < 100 Hz. However, the total

Here we examine the conditions under which we can ne-
glect the back-action of impurities on a Bogoliubov mode

10 ms have already been achieved ’ 40]. in phase space. The displacement operation is defined by
D(ap)|vac) = |ap), i.€. a displacement creates the coherent
state|a,) from the Bogoliubov ground stateac), which sat-
isfiequ|vac> = 0 for all q. If the magnitude of the displace-
ment parametes, is much smaller than that of the coherent
state amplitude,,, then we can say that the back-action of the
We evaluate the general form of the spectral densitipin impurities is negligible. In other words, we would like taosi
dimensions [cf. Eq[{10)] using the full Bogoliubov dispers  that the impurities do not create enough additional phoirons
relationwg = /Eq(Eq + 2g9n0), which enters in the decay the gas to have an appreciable effect on each other’s ewoluti
rates given in Eqs[9), in the continuum limit. In this limit  If we considerM double-well impurities centered at the

VY, = (2m)7P [dQp [dggP !, whereQp is the sur-  positionsx;, the corresponding time-dependent displacement

Appendix B: Spectral densities for general dispersion
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parameter is given by In the coherent case = 0 the diagonal elements df/ are
M . zero andu = 0. The Bloch vector can be found directly
ap(t) = —ikSpe 7 P/ Zeip'xi/ dser*[cos(p - L) from v(t) = eMtv(0) with the initial conditionv(0) =
0

| (0,0, —1)%, for which we obtain

—igi . 5(1) 5.Q ~
1bln(p L)<0'z (S)>], ’Um(t) _ IiQP [COS(th) _ 1] ’
where the operatcﬁ‘g(f)_pertains to impurityi. For simplicity, 0 P
we take a constar(ﬁéz)(s)) = 1, which amounts to the as- vy (t) = =2 sin(Qpt)
sumption that each impurity is static and localised in the le Qp
minimum of its double-well potential. In the majority of sit 6§ f) ~
uations this assumpti i v:(t) = —25 — &5 cos(pt).
ption represents an over-estimatg @, 02 02 p
P P

since the oscillations of the impurity dynamical variatdes
assumed to be far detuned from resonance wjthand are ~ Equation[(1#) then follows from the solution foz(t).

generally out of phase with each other. We further assume, In the case with damping but no detuning the solution is of
for the sake of concreteness, that the detectors are attamge the formv (t) = v(t) + v, wherev(t) solvesdv /dt = Mv

a 1D lattice with lattice parametar We thus obtain andv° is the stationary state in the long-time limit. The latter
9ed . o is found fromv> = — M ~1u and given by® = 0,
o _ K Spsin°(Mp-a/2) —o2p? /2
lap()]" = —5~—— sin”(wpt/2)e”7 V7%, ko — kg
wp  sin“(p-a/2) v = Qp —————,
(C1) 2k2 + Q5
Neglecting the oscillatory time-dependence, the contribu o 7 by —k_
tion of each individual impurity to Eq.[{C1) is of order V. = 22 + 02

k25267 /2 /2 SinceS2e7 P /2 | My 1|2, we find
Phe di - P - ale imourity i The solution forv () can be expressed in terms of the eigen-
that the displacement due to a single impurity is small com- p 9

pared to3, if vectorsm; and eigenvalues; of the matrix\M as
QP 2 ~ & N
e < |Bpl*, (C2) v(t) = chmje 9
j=1

where the resonant Rabi frequency(ls = 2x|M}; 1,0p].

Eq. [C2) is easily satisfied within the regime of validity bét

rOt\‘;j‘Vti'tT]g ﬁaﬁfn;lﬁﬁtrgrﬁogéghfi/ L:g |<:cllu de the factor finally yields the relevant component of the Bloch vector

sin?(Mp - a/2)/sin’(p - a/2), which is typically of order 20pv5° — (v2° + 1) (k + wp)

unity and only takes significant values (M?) whenq - a v:(t) = ‘ 2wp

differs from an integer multiple dfz by an amount of the or- 20,02° — (122 + 1)(k — wp)

der2w/M or less. Hence, for nearly all cases the evolution of _ Py z P

the impurities is unaffected by the excitations they thduese 2wp

create in the Bose gas, since their contributions are giyiera The quantityw, = (k% — 493)1/2 is real-valued for strong

out of phase and therefore do not add up significantly. dampingk > €, and purely imaginary in the strong driving
regimeQ,, > k, in which case the populatign(t) = [1 —

~ o o
Appendix D: General solution of the Bloch equations Yz v:(t)]/2 exhibits clear oscillations.

where the coefficients; are fixed by the initial conditions
v(0) = v(0) — v = (0, —v°, —v® — 1). This procedure

y

e 5 (Bk+wp)t

e_%(37€_wp)t .

We solve the Bloch equations {15) for the fully coherent  appendix E: Uncertainties in the temperature measurement
case k = 0) to obtain the Rabi oscillations described by
Eq. (I3), and for the resonant cagg = 0 with damping Now we quantify the uncertainty incurred in an experiment
(k # 0), which is used in Se¢. IVIB. In both cases we are(, getermine the Bose gas temperature resulting from ttte fini

interested in the populatiomy(t) with the initial condition  mper of measurements. We do this both for the equilibrium
poo(0) = 1. The populatiorny, is related to the Bloch vector . othod and the non-equilibrium method.

v throughpgo = (1 = v-)/2. a. Equilibrium method. When extracting the tempera-
‘The Bloch equations |:p matrix formredd/dt = Mv+u o7, fromthe equilibrium populatiopy; = k. / (k4 +k_),
withu = (0,0,k — k)" and given knowledge of.J, the value ofT, responds to small

—k =6y O changesp;; of the equilibrium population as

M=1 6, =k = |- 0o _ pu (9pu ~opn
0 Q, —2k To Ty \ 0Ty P11



Assuming that the estimate pf; is obtained byM inde-
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qubit in its eigenbasis. Here, we discuss the experimental

pendent measurements of the state of the qubit in the energgchniques suitable to realize these requirements.

basis, we find that the expected uncertaiaty, of the tem-
peraturely is

ATy 1 kgTy (2n(2J,Tp) + 1)(n(2J, Tp) + 1)/2
To M 2J e2//ksTo[n(2J, Ty)|3/2 ’

where we have used the variange — p) of a binomial vari-
able that take® and1 with probability(1 — p) andp, respec-
tively, and thel /v/M scaling of the standard deviation of an
average ovell/ measurement outcomes.

b. Non-equilibrium method. If there is a small change
§k(Ty) in the ratek(Ty) the corresponding changé&p in our
estimate ofl, from Eq. [IT) is given by

@ - kBTO 2n(2J, To) +1 6];(T0)
To  2J 2e2//ksTon2(2J,Ty) k(Tp)

How accurately the ratgé(7,) can be measured is in turn
fundamentally limited by the accuracy to whigh; can be
measured. As an example, the rate

- 1

k(To) = 2_t0 In

1 — p11(o0)
p11(to) — p11(o0)

can be determined from the values @fi (¢) at two times,
firstly a time in the middle of the decay, e.gty
In(2)/2k(Ty), and second a time at the end of the degay-
1/k(Ty), effectivelyt; = oo. For small changegpi (o)
andép11 (00) in these values, the small changgTy) in rate

k(7)) is thus given by

§k(Ty) _ dp11(to) — dp11(c0)
KTy ~ 2@~ pn(o)]

where the denominator is roughly on the order or unity. As-

suming independent measurementg,gf{¢) at differenttimes
and that the estimate ofi; (¢) is obtained as abové( inde-

pendent measurements) we obtain the expected uncertainty

ATO 7/€BT0 2n(2J, To) +1
Ty  2J 2e27/ksTon2(2.J,Ty)
" V1 (to)[1 = p11(to)] + pr1(o0)[1 — pr1(o0)]
VM2In(2)[1 = p11(0)]

for the estimate of the temperatufg.

3

1. Preparation of the initial qubit state

For all of the procedures we propose the qubit is prepared
in either of the two statel9) or |1). We now briefly discuss,
how the initial state can be prepared experimentally.

We consider an array of double wells formed by a superpo-
sition of two lattices with wavelengtts\ and\ as discussed
in App.[A In such a setup the symmetric state is prepared
as follows: first, the2\-lattice is unit-loaded with impurity
atoms by slowly increasing its intensity. Second, the isitgn
of the M-lattice is increased quickly to the desired value, while
avoiding vibrational excitatior{ﬂlS]. The barrier actsdik
beam splitter; the impurity atoms are now in the symmetric
state. With ar /2-phase kick the impurity can then be lifted to
the excited statél). This may be realized by switching back
to the 2\-lattice, exciting the impurity, and then raising the
-lattice again.

2. Measurement of a single qubit

All of the applications introduced in the previous sectien r
duce to measuring the population of the energy eigengtate
(equivalentlyp;1). Moreover, in Sed_IV A we assumed this
was done via repeated measurement in the energy eigenbasis.

This is indeed possible with a cold atom setup. For exam-
ple, one appropriate technique is a band-mapping variant of
a time-of-flight (TOF) absorption measuremdﬁﬁ [E%,@—SZ].
In the above setup thg lattice is slowly lowered, adiabat-
ically mapping the|0) and |1) states into the first and sec-
ond Brillouin zones (bands), respectively, of the lattice.

In a second step, th2\ lattice is slowly lowered, adiabati-
cally mapping the quasi-momentum states to real momentum
states, thus mappin) and|1) to non-overlapping regions
of momentum space. Therefore a TOF image of the resulting
expansion measures an impurity in the energy eigenbasis.

Repeating this procedure fav/ identical copies of the

whole system, the fraction of measurements obtaining the im

Assuming for example that the impurity parameters arepurity ground state provides an estimategf with binomial

chosen such thai; (o), p11(c0) = 1/2, the resulting un-
certainty obeys

ATy N 1 kT 2n(2J, To) +1

To VM 2J 2v/2In(2)e2//ksTon2(2.J,Ty)

Appendix F: Preparation and measurement of a single qubit

uncertaintyApogo = +/poo(1 — poo) /M.

Appendix G: Master equation for multiple impurities

We consider a system oM impurity detectors, each
trapped in separate but otherwise identical double-we#ipo
tials. We assume, partly for simplicity and partly as it is ex

The measurement schemes proposed in[Seéc. IV require tiperimentally likely, that all the detectors are alignedabiat

controlled preparation of the double-well qubit in its tveovk

to each other, so that the two minima of the potential confin-

est eigenstatel®) or |1), as well as the measurement of the ing impurity ¢ are located at the positioss + L. Neglecting
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a constant, the Hamiltonian of the impurities is The three parameterg?), rt) andl“gfj) control the rate
M at which correlations between the impurity detectors are ge
H, = ngfgi)_ erated throughout the detection procedure. In order to ac-
) tually evaluate these quantities, one must first carry cput

Making the same assumptions described in Séc. I, we ﬁnéummation entering the interdependence funcfior (G1). The

that the interaction of the impurities with the gas is desedi  'eSult of this computation is highly dependent on both the
by the Hamiltonian number of spatial dimensions and the geometrical configura-

tion of the detectors. In order to understand this deperalenc

. . A it suffices to consider the function
Hay =30 37 (Mauor /b, + M 179 ) © 5,
=1 q

M
7 iaxi 7 r* o —iqeX; ] = sin? . g .
+ZZ(quq bf + Me™a bq)®]l, Gplgr) /dQDmn (a-L)cos(q-r),
=1 q

where the matrix elementd/q 01 and My = $(Mq00 +

Mg 11) are defined by Eq[15). which is proportional to the interdependence functionl (1)
Under the same approximations as described in[Sec] 11l Athe continuum limit. The integral extends over the solidlang

we derive a Lindblad master equation describing the imypurit 2, subtended on th@) — 1)-sphere by the momentum vector

dynamics induced by their interaction with the thermally oc q. Performing this integral yields

cupied Bogoliubov modes. This takes the form

0pq . .
i = 2 Lilpa(O] + > Cislpa(t)], Gi(g,7) = 2cos(gr) sin(qL) (G2)
i i#j
Go(q,r) = 21 BB in?(gt - L), G3
whereL; describes the independent evolution of imputity 2(¢,7) " .O(qr) SHT (quA ) (G3)
while C;; describes the dynamics of correlations between im- G(q,r) ~ 4msinc(gr) sin”(qr - L) , (G4)

purities: andj due to their mutual interaction with the spa-
tially correlated reservoir. Explicitly, the local termesad
wheret = r/r. Our expression for one dimension is exact,

Lilp) = - IJ[G—EZ)’ Al however we have employed some approximations in two and
+ Z k. (6£i)ﬁ(&gi))]‘ _ %{(&gi))]‘&gi)’ﬁ})’ three dimensions in order to o_btain more intelligible equa-
o tions. In both two and three dimensions we have made the
natural assumption that the impurities are placed far apart
thatr > L. In two dimensions we have also made the more
stringent assumption that >> 1 over the frequency range of

where the local gain and decay ratesare defined by EqL]9).
The correlation terms read

Cijl3] = — in™ 669, gl interest.
+ Z NG <&§j)[;(&§i))f _ 1{(&?))%?)’[3}) . By examining Eq.[(GR), we see that the growth of corre-
s=% 2 lations is unavoidable in one dimension. This is due to the

The exchange of phonons leads to coherent coupling dficl Peculiar to one dimension, that density waves geedrat
strengthn() between impurities and j, while the rate of by each impurity propagate with constant intensity at aabit

growth of classical correlations between these impurises ily large distances from the source. In two_and _three dimen-
controlled by the quantitieﬁf). These parameters can be sions, on th‘? other har_ld, energy conservation dlctatemt_aat
expressed in terms of the interdependence function flux of den5|_ty waves is attenuateciov?r d|stance,_ leading to
an asymptotic decay @ p(q,r) ~ r—(P~1/2, Most impor-
Folw,r) =r>> [Mgo|*cos(q-1)d(w —wq). (G1)  tantly, the factorin®(¢i - L) appearing in Eqs[{G3) and (14)
q indicates thanho correlationsare generated for “perpendicu-
Specifically, we have lar” configurations, wherm;; - L = 0 for all impurity pairs.
- This is because of the angular dependence of the phonon
) _ 2w radiation emanating from each detector, which at large dis-
= P/dw 177 —o2) bW ri), tances vanishes in the directions perpendiculfu toikewise,
each impurity does not respond to density waves impinging
from directions perpendicular i, as demonstrated in Figl. 4.
Therefore, in two and three dimensions, it is possible tatere
) — 27[n(2J) + 1] Fp(2J, ;) a one-dimensional array of impurity detectors that can @rob
(i) a single realisation of a Bose-Einstein condensate witabut
I = 2mn(2J) Fp (2, rij). fecting each other's measurements.

0
whereP denotes the Cauchy principal value ang = x; —
x;, while



