55 research outputs found
Influence of Intra-cell Traffic on the Output Power of Base Station in GSM
In this paper we analyze the influence of intracell traffic in a GSM cell on the base station output power. It is proved that intracell traffic increases this power. If offered traffic is small, the increase of output power is equal to the part of intracell traffic. When the offered traffic and, as the result, call loss increase, the increase of output power becomes less. The results of calculation are verified by the computer simulation of traffic process in the GSM cell. The calculation and the simulation consider the uniform distribution of mobile users in the cell, but the conclusions are of a general nature
Combining frequency and time domain approaches to systems with multiple spike train input and output
A frequency domain approach and a time domain approach have been combined in an investigation of the behaviour of the primary and secondary endings of an isolated muscle spindle in response to the activity of two static fusimotor axons when the parent muscle is held at a fixed length and when it is subjected to random length changes. The frequency domain analysis has an associated error process which provides a measure of how well the input processes can be used to predict the output processes and is also used to
specify how the interactions between the recorded processes
contribute to this error. Without assuming stationarity of the input, the time domain approach uses a sequence of probability models of increasing complexity in which the number of input processes to the model is progressively increased. This feature of the time domain approach was used to identify a preferred direction of interaction between the processes underlying the generation of the activity of the primary and secondary endings. In the presence of fusimotor activity and dynamic length changes imposed on the muscle, it was shown that the activity of the primary and secondary endings carried different information about the effects of the inputs imposed on the muscle spindle. The results presented in this work emphasise that the analysis of the behaviour of complex
systems benefits from a combination of frequency and time
domain methods
Relating reflex gain modulation in posture control to underlying neural network properties using a neuromusculoskeletal model
During posture control, reflexive feedback allows humans to efficiently compensate for unpredictable mechanical disturbances. Although reflexes are involuntary, humans can adapt their reflexive settings to the characteristics of the disturbances. Reflex modulation is commonly studied by determining reflex gains: a set of parameters that quantify the contributions of Ia, Ib and II afferents to mechanical joint behavior. Many mechanisms, like presynaptic inhibition and fusimotor drive, can account for reflex gain modulations. The goal of this study was to investigate the effects of underlying neural and sensory mechanisms on mechanical joint behavior. A neuromusculoskeletal model was built, in which a pair of muscles actuated a limb, while being controlled by a model of 2,298 spiking neurons in six pairs of spinal populations. Identical to experiments, the endpoint of the limb was disturbed with force perturbations. System identification was used to quantify the control behavior with reflex gains. A sensitivity analysis was then performed on the neuromusculoskeletal model, determining the influence of the neural, sensory and synaptic parameters on the joint dynamics. The results showed that the lumped reflex gains positively correlate to their most direct neural substrates: the velocity gain with Ia afferent velocity feedback, the positional gain with muscle stretch over II afferents and the force feedback gain with Ib afferent feedback. However, position feedback and force feedback gains show strong interactions with other neural and sensory properties. These results give important insights in the effects of neural properties on joint dynamics and in the identifiability of reflex gains in experiments
Neural cytoskeleton capabilities for learning and memory
This paper proposes a physical model involving the key structures within the neural cytoskeleton as major players in molecular-level processing of information required for learning and memory storage. In particular, actin filaments and microtubules are macromolecules having highly charged surfaces that enable them to conduct electric signals. The biophysical properties of these filaments relevant to the conduction of ionic current include a condensation of counterions on the filament surface and a nonlinear complex physical structure conducive to the generation of modulated waves. Cytoskeletal filaments are often directly connected with both ionotropic and metabotropic types of membrane-embedded receptors, thereby linking synaptic inputs to intracellular functions. Possible roles for cable-like, conductive filaments in neurons include intracellular information processing, regulating developmental plasticity, and mediating transport. The cytoskeletal proteins form a complex network capable of emergent information processing, and they stand to intervene between inputs to and outputs from neurons. In this manner, the cytoskeletal matrix is proposed to work with neuronal membrane and its intrinsic components (e.g., ion channels, scaffolding proteins, and adaptor proteins), especially at sites of synaptic contacts and spines. An information processing model based on cytoskeletal networks is proposed that may underlie certain types of learning and memory
528 The choice of optimal radiotherapy technique for locally advanced maxillary carcinoma using 3D treatment planning system
Modeling Spinal Sensorimotor Control for Reach Task
The spinal sensorimotor control system executes movement instructions from the central controller in the brain that plans the task in terms of global requirements. Spinal circuits serve as a local regulator that tunes the neuromuscular apparatus to an optimal state for task execution. We hypothesize that reach tasks are controlled by a set of feedforward and feedback descending commands for trajectory and final posture, respectively. This paper presents the use of physiologically realistic models of the spinal sensorimotor system to demonstrate the feasibility of such dual control for reaching movements.</p
PATHOLOGICAL CASE OF THE MONTH: SUDDEN DEATH IN A CHILD AS A RESULT OF PANCREATITIS DURING VALPROIC ACID THERAPY
Sensitivity of contribution margin in milk production on family farms
© 2018, University of Zagreb - Faculty of Agriculture. All rights reserved. Milk production in Serbia is characterized by small surface of production and a large number of small family farms. For rural areas where this production is mostly carried out, economic profitability of production contributes to becoming a family business. This study refers to milk family farms of smaller and medium economic and production capacity, for which the economic analysis in the period of three years was applied and production results were calculated. Applying the calculation method the total revenues and total costs, and contribution margins per cow and per liter of produced milk were computed. By comparing the results obtained on farms A and B, conclusions were drawn, and the sensitivity of contribution margins to change of the given parameters (purchase prices of milk and milk produced per cow) was determined by sensitivity analysis. The stability in production is realized by achieving higher contribution margins with satisfactory milk yield per cow and quality milk, as well acceptable purchase prices of milk
Age and species-dependent differences in the neurokinin B system in rat and human brain
- …
