96 research outputs found
Effect of skin dielectric properties on the read range of epidermal ultra-high frequency radio-frequency identification tags
This Letter presents an investigation of the effect of human tissue conductivity and permittivity on the performance of epidermal transfer tattoo ultra-high frequency radio-frequency identification (RFID) tags. The measurements were carried out on 20 individuals and the variations in the measured dielectric properties correlate well with variations in the measured tag read range on the individuals and to a lesser extent with their body mass index values. Simulation results also showed the effects of permittivity and conductivity on the designed resonance frequency of the RFID tag
The influence of skeletal muscle anisotropy on electroporation: in vivo study and numerical modeling
The aim of this study was to theoretically and experimentally investigate electroporation of mouse tibialis cranialis and to determine the reversible electroporation threshold values needed for parallel and perpendicular orientation of the applied electric field with respect to the muscle fibers. Our study was based on local electric field calculated with three-dimensional realistic numerical models, that we built, and in vivo visualization of electroporated muscle tissue. We established that electroporation of muscle cells in tissue depends on the orientation of the applied electric field; the local electric field threshold values were determined (pulse parameters: 8 × 100 μs, 1 Hz) to be 80 V/cm and 200 V/cm for parallel and perpendicular orientation, respectively. Our results could be useful electric field parameters in the control of skeletal muscle electroporation, which can be used in treatment planning of electroporation based therapies such as gene therapy, genetic vaccination, and electrochemotherapy
On the non-ideal behaviour of polarised liquid-liquid interfaces
peer-reviewedInterpretation of electrochemical data generated at the interface between two immiscible electrolyte solutions (ITIES), and realisation of the ITIES for technological applications, requires comprehensive knowledge of the origin of the observed currents (i.e., capacitive, ion or electron transfer currents) and the factors influencing the electrical double layer. Upon formation, the ITIES is away from equilibrium and therefore is a close approximation, but not a perfect realisation, of an ideally polarisable interface. Nevertheless, the formalism of equilibrium thermodynamics, e.g., the Nernst equation, are universally applied to interpret electrochemical processes at the ITIES. In this study, electrochemical impedance spectroscopy (EIS), cyclic and AC voltammetry were applied to probe electrochemical processes at an ITIES formed between aqueous and α,α,α-trifluorotoluene electrolyte solutions. A significant contribution from faradaic currents is observed across the whole polarisable potential window and the electrolyte solution is not an ideal resistor (especially at high electric field frequencies). The electrical double-layer at the interface is influenced by the nature of the ions adsorbed. Small inorganic ions, such as sulfate anions and aluminium cations, are shown to absorb at the interface, with methanesulfonic acid absorbing strongly. The nature of ions adsorbed at the interface shifts the potential of zero charge (PZC) at the ITIES, which we propose in turn influences the kinetics of ion transferACCEPTEDpeer-reviewe
The Role of pH Fronts in Reversible Electroporation
We present experimental measurements and theoretical predictions of ion transport in agar gels during reversible electroporation (ECT) for conditions typical to many clinical studies found in the literature, revealing the presence of pH fronts emerging from both electrodes. These results suggest that pH fronts are immediate and substantial. Since they might give rise to tissue necrosis, an unwanted condition in clinical applications of ECT as well as in irreversible electroporation (IRE) and in electrogenetherapy (EGT), it is important to quantify their extent and evolution. Here, a tracking technique is used to follow the space-time evolution of these pH fronts. It is found that they scale in time as , characteristic of a predominantly diffusive process. Comparing ECT pH fronts with those arising in electrotherapy (EChT), another treatment applying constant electric fields whose main goal is tissue necrosis, a striking result is observed: anodic acidification is larger in ECT than in EChT, suggesting that tissue necrosis could also be greater. Ways to minimize these adverse effects in ECT are suggested
Electropermeabilization of endocytotic vesicles in B16 F1 mouse melanoma cells
It has been reported previously that electric pulses of sufficiently high voltage and short duration can permeabilize the membranes of various organelles inside living cells. In this article, we describe electropermeabilization of endocytotic vesicles in B16 F1 mouse melanoma cells. The cells were exposed to short, high-voltage electric pulses (from 1 to 20 pulses, 60 ns, 50 kV/cm, repetition frequency 1 kHz). We observed that 10 and 20 such pulses induced permeabilization of membranes of endocytotic vesicles, detected by release of lucifer yellow from the vesicles into the cytosol. Simultaneously, we detected uptake of propidium iodide through plasma membrane in the same cells. With higher number of pulses permeabilization of the membranes of endocytotic vesicles by pulses of given parameters is accompanied by permeabilization of plasma membrane. However, with lower number of pulses only permeabilization of the plasma membrane was detected
- …