503 research outputs found
Recommended from our members
Stochastic process model for timber-concrete composite beam deterioration
The aim of this paper is to present a new stochastic process model that will capture the true nature of deterioration of timber-concrete composite beams. Composite elements such as timber-concrete composite sections are designed to take advantage of compatibility of materials under sustained loading. Applied sustained load on timber-concrete composite structures causes gradual increase of deformation and deflection. In particular for timber-concrete composite beams, component materials will deteriorate at different pace over the life-cycle. In order to enable efficient management of structures in terms of required maintenance, repair and/or replacement, it is essential to be able to capture the uncertain nature of the deterioration process. We focus on modeling the deterioration of mid-span deflection of the timber-concrete composite beam over long term under sustained load. As the increasing deflection of the timber-concrete composite beam over time is generally uncertain and non-decreasing, it can best be regarded as a continuous gamma process. Examples of continuous gamma process representation have been included
Recommended from our members
Gamma process model for timber-concrete composite beam deterioration prediction
This paper presents the application of the advanced probabilistic slope stability model with precipitation effects (APSMP) developed to assess the performance of small homogeneous earthfill embankment dam slopes, when exposed to future seasonal precipitation scenarios. Here, the UKs latest probabilistic climate model known as UKCP09 is applied. To reflect the critical conditions conducive to slope failure, a benchmark has been developed to identify the change, if any, in the risk classification of the slope’s performance level due to precipitation. Thus, enabling the reassessment of the dam’s risk classification, as categorized by the Flood and Water Management Act 2010. Such an approach could therefore be well placed to support and enhance the decision making process, its impact on the public, especially in relation to future climate effects
Surface and thermomechanical characterization of polyurethane networks based on poly(dimethylsiloxane) and hyperbranched polyester
Two series of polyurethane (PU) networks based on Boltorn® hyperbranched polyester (HBP) and hydroxyethoxy propyl terminated poly(dimethylsiloxane) (EO-PDMS) or hydroxy propyl terminated poly(dimethylsiloxane) (HPPDMS), were synthesized. The effect of the type of soft PDMS segment on the properties of PUs was investigated by Fourier transform infrared spectroscopy (FTIR), contact angle measurements, surface free energy determination, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), dynamic mechanical thermal analysis (DMTA) and differential scanning calorimetry (DSC). The surface characterization of PUs showed existence of slightly amphiphilic character and it revealed that PUs based on HP-PDMS have lower surface free energy, more hydrophobic surface and better waterproof performances than PUs based on EO-PDMS. PUs based on HPPDMS had higher crosslinking density than PUs based on EO-PDMS. DSC and DMTA results revealed that these newlysynthesized PUs exhibit the glass transition temperatures of the soft and hard segments. DMTA, SEM and AFM results confirmed existence of microphase separated morphology. The results obtained in this work indicate that PU networks based on HBP and PDMS have improved surface and thermomechanical properties
A pseudopotential study of electron-hole excitations in colloidal, free-standing InAs quantum dots
Excitonic spectra are calculated for free-standing, surface passivated InAs
quantum dots using atomic pseudopotentials for the single-particle states and
screened Coulomb interactions for the two-body terms. We present an analysis of
the single particle states involved in each excitation in terms of their
angular momenta and Bloch-wave parentage. We find that (i) in agreement with
other pseudopotential studies of CdSe and InP quantum dots, but in contrast to
k.p calculations, dot states wavefunction exhibit strong odd-even angular
momentum envelope function mixing (e.g. with ) and large
valence-conduction coupling. (ii) While the pseudopotential approach produced
very good agreement with experiment for free-standing, colloidal CdSe and InP
dots, and for self-assembled (GaAs-embedded) InAs dots, here the predicted
spectrum does {\em not} agree well with the measured (ensemble average over dot
sizes) spectra. (1) Our calculated excitonic gap is larger than the PL measure
one, and (2) while the spacing between the lowest excitons is reproduced, the
spacings between higher excitons is not fit well. Discrepancy (1) could result
from surface states emission. As for (2), agreement is improved when account is
taken of the finite size distribution in the experimental data. (iii) We find
that the single particle gap scales as (not ), that the
screened (unscreened) electron-hole Coulomb interaction scales as
(), and that the eccitonic gap sclaes as . These scaling
laws are different from those expected from simple models.Comment: 12 postscript figure
An accurate description of quantum size effects in InP nanocrystallites over a wide range of sizes
We obtain an effective parametrization of the bulk electronic structure of
InP within the Tight Binding scheme. Using these parameters, we calculate the
electronic structure of InP clusters with the size ranging upto 7.5 nm. The
calculated variations in the electronic structure as a function of the cluster
size is found to be in excellent agreement with experimental results over the
entire range of sizes, establishing the effectiveness and transferability of
the obtained parameter strengths.Comment: 9 pages, 3 figures, pdf file available at
http://sscu.iisc.ernet.in/~sampan/publications.htm
A Proposal of the European Association for the Study of Obesity to Improve the ICD-11 Diagnostic Criteria for Obesity Based on the Three Dimensions Etiology, Degree of Adiposity and Health Risk
Diagnostic criteria for complex medical conditions caused by a multitude of both genetic and environmental factors should be descriptive and avoid any attribution of causality. Furthermore, the wording used to describe a disorder should be evidence-based and avoid stigmatization of the affected individuals. Both terminology and categorizations should be readily comprehensible for healthcare professionals and guide clinical decision making. Uncertainties with respect to diagnostic issues and their implications may be addressed to direct future clinical research. In this context, the European Association of the Study of Obesity (EASO) considers it an important endeavor to review the current ICD-11 Beta Draft for the definition of overweight and obesity and to propose a substantial revision. We aim to provide an overview of the key issues that we deem relevant for the discussion of the diagnostic criteria. We first discuss the current ICD-10 criteria and those proposed in the ICD 11 Beta Draft. We conclude with our own proposal for diagnostic criteria, which we believe will improve the assessment of patients with obesity in a clinically meaningful way
Perinatal Exposure to Bisphenol A Alters Early Adipogenesis in the Rat
BACKGROUND: The causes of the current obesity pandemic have not been fully elucidated. Implication of environmental endocrine disruptors such as bisphenol A (BPA) on adipose tissue development has been poorly investigated. OBJECTIVES: The aim of the present study was to evaluate the effects of perinatal exposure to BPA on early adipose storage at weaning. METHODS: Pregnant Sprague-Dawley rats had access to drinking water containing 1 mg/L BPA from day 6 of gestation through the end of lactation. Pups were weaned on postnatal day (PND) 21. At that time, we investigated perigonadal adipose tissue of pups (weight, histology, gene expression). For the remaining animals, we recorded body weight and food intake for animals on either standard chow or a high-fat diet. RESULTS: Gestational exposure to BPA did not alter the sex ratio or litter size at birth. On PND1, the weight of male and female BPA-exposed pups was increased. On PND21, body weight was increased only in females, in which parametrial white adipose tissue (pWAT) weight was increased about 3-fold. This excess of pWAT was associated with adipocyte hypertrophy and overexpression of lipogenic genes such as C/EBP-alpha (CAAT enhancer binding protein alpha), PPAR-gamma (peroxisome proliferator-activated receptor gamma), SREBP-1C (sterol regulatory element binding protein-1C), LPL (lipoprotein lipase), FAS (fatty acid synthase), and SCD-1 (stearoyl-CoA desaturase 1). In addition, gene expression of SREBP-1C, FAS, and ACC (acetyl-CoA carboxylase) was also increased in liver from BPA-exposed females at PND21, without a change in circulating lipids and glucose. After weaning, perinatal BPA exposure predisposed to overweight in a sex- and diet-dependent manner. We observed no change in food intake due to perinatal BPA exposure in rats on either standard chow or a high-fat diet. CONCLUSIONS: Perinatal exposure to a low dose of BPA increased adipogenesis in females at weaning. Adult body weight may be programmed during early life, leading to changes dependent on the sex and the nutritional status. Although further studies are required to understand the mechanisms of BPA action in early life, these results are particularly important with regard to the increasing prevalence of childhood obesity and the context-dependent action of endocrine disruptors
Electron and Hole Transfer from Indium Phosphide Quantum Dots
Electron-and hole-transfer reactions are studied in colloidal InP quantum dots (QDs). Photoluminescence quenching and time-resolved transient absorption (TA) measurements are utilized to examine hole transfer from photoexcited InP QDs to the hole acceptor N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD) and electron transfer to nanocrystalline titanium dioxide (TiO 2 ) films. Core-confined holes are effectively quenched by TMPD, resulting in a new ∼4-ps component in the TA decay. It is found that electron transfer to TiO 2 is primarily mediated through surface-localized states on the InP QDs
- …