1,220 research outputs found

    Planck-scale modifications to Electrodynamics characterized by a space-like symmetry-breaking vector

    Full text link
    In the study of Planck-scale ("quantum-gravity induced") violations of Lorentz symmetry, an important role was played by the deformed-electrodynamics model introduced by Myers and Pospelov. Its reliance on conventional effective quantum field theory, and its description of symmetry-violation effects simply in terms of a four-vector with nonzero component only in the time-direction, rendered it an ideal target for experimentalists and a natural concept-testing ground for many theorists. At this point however the experimental limits on the single Myers-Pospelov parameter, after improving steadily over these past few years, are "super-Planckian", {\it i.e.} they take the model out of actual interest from a conventional quantum-gravity perspective. In light of this we here argue that it may be appropriate to move on to the next level of complexity, still with vectorial symmetry violation but adopting a generic four-vector. We also offer a preliminary characterization of the phenomenology of this more general framework, sufficient to expose a rather significant increase in complexity with respect to the original Myers-Pospelov setup. Most of these novel features are linked to the presence of spatial anisotropy, which is particularly pronounced when the symmetry-breaking vector is space-like, and they are such that they reduce the bound-setting power of certain types of observations in astrophysics

    Constraining Fundamental Physics with Future CMB Experiments

    Full text link
    The Planck experiment will soon provide a very accurate measurement of Cosmic Microwave Background anisotropies. This will let cosmologists determine most of the cosmological parameters with unprecedented accuracy. Future experiments will improve and complement the Planck data with better angular resolution and better polarization sensitivity. This unexplored region of the CMB power spectrum contains information on many parameters of interest, including neutrino mass, the number of relativistic particles at recombination, the primordial Helium abundance and the injection of additional ionizing photons by dark matter self-annihilation. We review the imprint of each parameter on the CMB and forecast the constraints achievable by future experiments by performing a Monte Carlo analysis on synthetic realizations of simulated data. We find that next generation satellite missions such as CMBPol could provide valuable constraints with a precision close to that expected in current and near future laboratory experiments. Finally, we discuss the implications of this intersection between cosmology and fundamental physics.Comment: 11 pages, 14 figure

    Delayed Recombination and Cosmic Parameters

    Full text link
    Current cosmological constraints from Cosmic Microwave Background (CMB) anisotropies are typically derived assuming a standard recombination scheme, however additional resonance and ionizing radiation sources can delay recombination, altering the cosmic ionization history and the cosmological inferences drawn from CMB data. We show that for recent observations of CMB anisotropy, from the Wilkinson Microwave Anisotropy Probe satellite mission 5-year survey (WMAP5) and from the ACBAR experiment, additional resonance radiation is nearly degenerate with variations in the spectral index, n_s, and has a marked effect on uncertainties in constraints on the Hubble constant, age of the universe, curvature and the upper bound on the neutrino mass. When a modified recombination scheme is considered, the redshift of recombination is constrained to z_*=1078\pm11, with uncertainties in the measurement weaker by one order of magnitude than those obtained under the assumption of standard recombination while constraints on the shift parameter are shifted by 1-sigma to R=1.734\pm0.028. Although delayed recombination limits the precision of parameter estimation from the WMAP satellite, we demonstrate that this should not be the case for future, smaller angular scales measurements, such as those by the Planck satellite mission.Comment: 9 pages, 9 figure

    Laue Lens Development for Hard X-rays (>60 keV)

    Full text link
    Results of reflectivity measurements of mosaic crystal samples of Cu (111) are reported. These tests were performed in the context of a feasibility study of a hard X-ray focusing telescope for space astronomy with energy passband from 60 to 600 keV. The technique envisaged is that of using mosaic crystals in transmission configuration that diffract X-rays for Bragg diffraction (Laue lens). The Laue lens assumed has a spherical shape with focal length ff. It is made of flat mosaic crystal tiles suitably positioned in the lens. The samples were grown and worked for this project at the Institute Laue-Langevin (ILL) in Grenoble (France), while the reflectivity tests were performed at the X-ray facility of the Physics Department of the University of Ferrara.Comment: 6 pages, 12 figures, accepted for publication in IEEE Transactions on Nuclear Scienc

    Determining the Neutrino Mass Hierarchy with Cosmology

    Full text link
    The combination of current large scale structure and cosmic microwave background (CMB) anisotropies data can place strong constraints on the sum of the neutrino masses. Here we show that future cosmic shear experiments, in combination with CMB constraints, can provide the statistical accuracy required to answer questions about differences in the mass of individual neutrino species. Allowing for the possibility that masses are non-degenerate we combine Fisher matrix forecasts for a weak lensing survey like Euclid with those for the forthcoming Planck experiment. Under the assumption that neutrino mass splitting is described by a normal hierarchy we find that the combination Planck and Euclid will possibly reach enough sensitivity to put a constraint on the mass of a single species. Using a Bayesian evidence calculation we find that such future experiments could provide strong evidence for either a normal or an inverted neutrino hierachy. Finally we show that if a particular neutrino hierachy is assumed then this could bias cosmological parameter constraints, for example the dark energy equation of state parameter, by > 1\sigma, and the sum of masses by 2.3\sigma.Comment: 9 pages, 6 figures, 3 table

    Finding Evidence for Massive Neutrinos using 3D Weak Lensing

    Full text link
    In this paper we investigate the potential of 3D cosmic shear to constrain massive neutrino parameters. We find that if the total mass is substantial (near the upper limits from LSS, but setting aside the Ly alpha limit for now), then 3D cosmic shear + Planck is very sensitive to neutrino mass and one may expect that a next generation photometric redshift survey could constrain the number of neutrinos N_nu and the sum of their masses m_nu to an accuracy of dN_nu ~ 0.08 and dm_nu ~ 0.03 eV respectively. If in fact the masses are close to zero, then the errors weaken to dN_nu ~ 0.10 and dm_nu~0.07 eV. In either case there is a factor 4 improvement over Planck alone. We use a Bayesian evidence method to predict joint expected evidence for N_nu and m_nu. We find that 3D cosmic shear combined with a Planck prior could provide `substantial' evidence for massive neutrinos and be able to distinguish `decisively' between many competing massive neutrino models. This technique should `decisively' distinguish between models in which there are no massive neutrinos and models in which there are massive neutrinos with |N_nu-3| > 0.35 and m_nu > 0.25 eV. We introduce the notion of marginalised and conditional evidence when considering evidence for individual parameter values within a multi-parameter model.Comment: 9 pages, 2 Figures, 2 Tables, submitted to Physical Review

    A Horizon Ratio Bound for Inflationary Fluctuations

    Full text link
    We demonstrate that the gravity wave background amplitude implies a robust upper bound on the ratio: \lambda / H^{-1} < e^60, where \lambda is the proper wavelength of fluctuations of interest and H^{-1} is the horizon at the end of inflation. The bound holds as long as the energy density of the universe does not drop faster than radiation subsequent to inflation. This limit implies that the amount of expansion between the time the scales of interest leave the horizon and the end of inflation, denoted by e^N, is also bounded from above, by about e^60 times a factor that involves an integral over the first slow-roll parameter. In other words, the bound on N is model dependent -- we show that for vast classes of slow-roll models, N < 67. The quantities, \lambda / H^{-1} or N, play an important role in determining the nature of inflationary scalar and tensor fluctuations. We suggest ways to incorporate the above bounds when confronting inflation models with observations. As an example, this bound solidifies the tension between observations of cosmic microwave background (CMB) anisotropies and chaotic inflation with a \phi^4 potential by closing the escape hatch of large N (< 62).Comment: 4 pages, 1 figure; revised to close a loophole in the earlier version and clarify our assumption

    Red Density Perturbations and Inflationary Gravitational Waves

    Get PDF
    We study the implications of recent indications for a red spectrum of primordial density perturbations for the detection of inflationary gravitational waves (IGWs) with forthcoming cosmic microwave background experiments. We find that if inflation occurs with a single field with an inflaton potential minimized at V=0, then Planck will be able to detect IGWs at better than 2σ\sigma confidence level, unless the inflaton potential is a power law with a very weak power. The proposed satellite missions of the Cosmic Vision and Inflation Probe programs will be able to detect IGWs from all the models we have surveyed at better than 5σ\sigma confidence level. We provide an example of what is required if the IGW background is to remain undetected even by these latter experiments.Comment: 4 pages, 2 figure

    The late-time behaviour of vortic Bianchi type VIII Universes

    Full text link
    We use the dynamical systems approach to investigate the Bianchi type VIII models with a tilted γ\gamma-law perfect fluid. We introduce expansion-normalised variables and investigate the late-time asymptotic behaviour of the models and determine the late-time asymptotic states. For the Bianchi type VIII models the state space is unbounded and consequently, for all non-inflationary perfect fluids, one of the curvature variables grows without bound. Moreover, we show that for fluids stiffer than dust (1<γ<21<\gamma<2), the fluid will in general tend towards a state of extreme tilt. For dust (γ=1\gamma=1), or for fluids less stiff than dust (0<γ<10<\gamma< 1), we show that the fluid will in the future be asymptotically non-tilted. Furthermore, we show that for all γ1\gamma\geq 1 the universe evolves towards a vacuum state but does so rather slowly, ρ/H21/lnt\rho/H^2\propto 1/\ln t.Comment: 19 pages, 3 ps figures, v2:typos fixed, refs and more discussion adde

    Constraints on primordial non-Gaussianity from WMAP7 and Luminous Red Galaxies power spectrum and forecast for future surveys

    Full text link
    We place new constraints on the primordial local non-Gaussianity parameter f_NL using recent Cosmic Microwave Background anisotropy and galaxy clustering data. We model the galaxy power spectrum according to the halo model, accounting for a scale dependent bias correction proportional to f_NL/k^2. We first constrain f_NL in a full 13 parameters analysis that includes 5 parameters of the halo model and 7 cosmological parameters. Using the WMAP7 CMB data and the SDSS DR4 galaxy power spectrum, we find f_NL=171\pm+140 at 68% C.L. and -69<f_NL<+492 at 95% C.L.. We discuss the degeneracies between f_NL and other cosmological parameters. Including SN-Ia data and priors on H_0 from Hubble Space Telescope observations we find a stronger bound: -35<f_NL<+479 at 95% C.L.. We also fit the more recent SDSS DR7 halo power spectrum data finding, for a \Lambda-CDM+f_NL model, f_NL=-93\pm128 at 68% C.L. and -327<f_{NL}<+177 at 95% C.L.. We finally forecast the constraints on f_NL from future surveys as EUCLID and from CMB missions as Planck showing that their combined analysis could detect f_NL\sim 5.Comment: 10 pages, 5 figures, 3 table
    corecore