Current cosmological constraints from Cosmic Microwave Background (CMB)
anisotropies are typically derived assuming a standard recombination scheme,
however additional resonance and ionizing radiation sources can delay
recombination, altering the cosmic ionization history and the cosmological
inferences drawn from CMB data. We show that for recent observations of CMB
anisotropy, from the Wilkinson Microwave Anisotropy Probe satellite mission
5-year survey (WMAP5) and from the ACBAR experiment, additional resonance
radiation is nearly degenerate with variations in the spectral index, n_s, and
has a marked effect on uncertainties in constraints on the Hubble constant, age
of the universe, curvature and the upper bound on the neutrino mass. When a
modified recombination scheme is considered, the redshift of recombination is
constrained to z_*=1078\pm11, with uncertainties in the measurement weaker by
one order of magnitude than those obtained under the assumption of standard
recombination while constraints on the shift parameter are shifted by 1-sigma
to R=1.734\pm0.028. Although delayed recombination limits the precision of
parameter estimation from the WMAP satellite, we demonstrate that this should
not be the case for future, smaller angular scales measurements, such as those
by the Planck satellite mission.Comment: 9 pages, 9 figure