529 research outputs found

    Functional Optimization in Complex Excitable Networks

    Full text link
    We study the effect of varying wiring in excitable random networks in which connection weights change with activity to mold local resistance or facilitation due to fatigue. Dynamic attractors, corresponding to patterns of activity, are then easily destabilized according to three main modes, including one in which the activity shows chaotic hopping among the patterns. We describe phase transitions to this regime, and show a monotonous dependence of critical parameters on the heterogeneity of the wiring distribution. Such correlation between topology and functionality implies, in particular, that tasks which require unstable behavior --such as pattern recognition, family discrimination and categorization-- can be most efficiently performed on highly heterogeneous networks. It also follows a possible explanation for the abundance in nature of scale--free network topologies.Comment: 7 pages, 3 figure

    Nonequilibrium phase transitions and tricriticality in a three-dimensional lattice system with random-field competing kinetics

    Full text link
    We study a nonequilibrium Ising model that stochastically evolves under the simultaneous operation of several spin-flip mechanisms. In other words, the local magnetic fields change sign randomly with time due to competing kinetics. This dynamics models a fast and random diffusion of disorder that takes place in dilute metallic alloys when magnetic ions diffuse. We performe Monte Carlo simulations on cubic lattices up to L=60. The system exhibits ferromagnetic and paramagnetic steady states. Our results predict first-order transitions at low temperatures and large disorder strengths, which correspond to the existence of a nonequilibrium tricritical point at finite temperature. By means of standard finite-size scaling equations, we estimate the critical exponents in the low-field region, for which our simulations uphold continuous phase transitions.Comment: 14 pages, 7 figures, accepted for publication in Phys. Rev.

    Noise driven dynamic phase transition in a a one dimensional Ising-like model

    Full text link
    The dynamical evolution of a recently introduced one dimensional model in \cite{biswas-sen} (henceforth referred to as model I), has been made stochastic by introducing a parameter β\beta such that β=0\beta =0 corresponds to the Ising model and β\beta \to \infty to the original model I. The equilibrium behaviour for any value of β\beta is identical: a homogeneous state. We argue, from the behaviour of the dynamical exponent zz,that for any β0\beta \neq 0, the system belongs to the dynamical class of model I indicating a dynamic phase transition at β=0\beta = 0. On the other hand, the persistence probabilities in a system of LL spins saturate at a value Psat(β,L)=(β/L)αf(β)P_{sat}(\beta, L) = (\beta/L)^{\alpha}f(\beta), where α\alpha remains constant for all β0\beta \neq 0 supporting the existence of the dynamic phase transition at β=0\beta =0. The scaling function f(β)f(\beta) shows a crossover behaviour with f(β)=constantf(\beta) = \rm{constant} for β<<1\beta <<1 and f(β)βαf(\beta) \propto \beta^{-\alpha} for β>>1\beta >>1.Comment: 4 pages, 5 figures, accepted version in Physical Review

    Unstable Dynamics, Nonequilibrium Phases and Criticality in Networked Excitable Media

    Full text link
    Here we numerically study a model of excitable media, namely, a network with occasionally quiet nodes and connection weights that vary with activity on a short-time scale. Even in the absence of stimuli, this exhibits unstable dynamics, nonequilibrium phases -including one in which the global activity wanders irregularly among attractors- and 1/f noise while the system falls into the most irregular behavior. A net result is resilience which results in an efficient search in the model attractors space that can explain the origin of certain phenomenology in neural, genetic and ill-condensed matter systems. By extensive computer simulation we also address a relation previously conjectured between observed power-law distributions and the occurrence of a "critical state" during functionality of (e.g.) cortical networks, and describe the precise nature of such criticality in the model.Comment: 18 pages, 9 figure

    Revisiting the effect of external fields in Axelrod's model of social dynamics

    Get PDF
    The study of the effects of spatially uniform fields on the steady-state properties of Axelrod's model has yielded plenty of controversial results. Here we re-examine the impact of this type of field for a selection of parameters such that the field-free steady state of the model is heterogeneous or multicultural. Analyses of both one and two-dimensional versions of Axelrod's model indicate that, contrary to previous claims in the literature, the steady state remains heterogeneous regardless of the value of the field strength. Turning on the field leads to a discontinuous decrease on the number of cultural domains, which we argue is due to the instability of zero-field heterogeneous absorbing configurations. We find, however, that spatially nonuniform fields that implement a consensus rule among the neighborhood of the agents enforces homogenization. Although the overall effects of the fields are essentially the same irrespective of the dimensionality of the model, we argue that the dimensionality has a significant impact on the stability of the field-free homogeneous steady state

    Absorbing-state phase transitions on percolating lattices

    Get PDF
    We study nonequilibrium phase transitions of reaction-diffusion systems defined on randomly diluted lattices, focusing on the transition across the lattice percolation threshold. To develop a theory for this transition, we combine classical percolation theory with the properties of the supercritical nonequilibrium system on a finite-size cluster. In the case of the contact process, the interplay between geometric criticality due to percolation and dynamical fluctuations of the nonequilibrium system leads to a new universality class. The critical point is characterized by ultraslow activated dynamical scaling and accompanied by strong Griffiths singularities. To confirm the universality of this exotic scaling scenario we also study the generalized contact process with several (symmetric) absorbing states, and we support our theory by extensive Monte-Carlo simulations.Comment: 11 pages, 10 eps figures included, final version as publishe

    Assessing Human Eye Exposure to UV Light: A Narrative Review.

    Get PDF
    Exposure to ultraviolet light is associated with several ocular pathologies. Understanding exposure levels and factors is therefore important from a medical and prevention perspective. A review of the current literature on ocular exposure to ultraviolet light is conducted in this study. It has been shown that ambient irradiance is not a good indicator of effective exposure and current tools for estimating dermal exposure have limitations for the ocular region. To address this, three methods have been developed: the use of anthropomorphic manikins, measurements through wearable sensors and numerical simulations. The specific objective, limitations, and results obtained for the three different methods are discussed

    A new approach to the chap LQ regulator exploiting the geometric properties of the Hamiltonian system

    Get PDF
    The cheap LQ regulator is reinterpreted as an output nulling problem which is a basic problem of the geometric control theory. In fact, solving the LQ regulator problem is equivalent to keep the output of the related Hamiltonian system identically zero. The solution lies on a controlled invariant subspace whose dimension is characterized in terms of the minimal conditioned invariant of the original system, and the optimal feedback gain is computed as the friend matrix of the resolving subspace. This study yields a new computational framework for the cheap LQ regulator, relying only on the very basic and simple tools of the geometric approach, namely the algorithms for controlled and conditioned invariant subspaces and invariant zeros

    Reentrant Behavior of the Spinodal Curve in a Nonequilibrium Ferromagnet

    Full text link
    The metastable behavior of a kinetic Ising--like ferromagnetic model system in which a generic type of microscopic disorder induces nonequilibrium steady states is studied by computer simulation and a mean--field approach. We pay attention, in particular, to the spinodal curve or intrinsic coercive field that separates the metastable region from the unstable one. We find that, under strong nonequilibrium conditions, this exhibits reentrant behavior as a function of temperature. That is, metastability does not happen in this regime for both low and high temperatures, but instead emerges for intermediate temperature, as a consequence of the non-linear interplay between thermal and nonequilibrium fluctuations. We argue that this behavior, which is in contrast with equilibrium phenomenology and could occur in actual impure specimens, might be related to the presence of an effective multiplicative noise in the system.Comment: 7 pages, 4 figures; Final version to appear in Phys. Rev. E; Section V has been revise

    Nonequilibrium phase transition on a randomly diluted lattice

    Get PDF
    We show that the interplay between geometric criticality and dynamical fluctuations leads to a novel universality class of the contact process on a randomly diluted lattice. The nonequilibrium phase transition across the percolation threshold of the lattice is characterized by unconventional activated (exponential) dynamical scaling and strong Griffiths effects. We calculate the critical behavior in two and three space dimensions, and we also relate our results to the recently found infinite-randomness fixed point in the disordered one-dimensional contact process.Comment: 4 pages, 1 eps figure, final version as publishe
    corecore