1,001 research outputs found

    Electric charge enhancements in carbon nanotubes: Theory and experiments

    Full text link
    We present a detailed study of the static enhancement effects of electric charges in micron-length single-walled carbon nanotubes, using theoretically an atomic charge-dipole model and experimentally electrostatic force microscopy. We demonstrate that nanotubes exhibit at their ends surprisingly weak charge enhancements which decrease with the nanotube length and increase with the nanotube radius. A quantitative agreement is obtained between theory and experiments.Comment: 6 Fi

    Inhomogenized sudden future singularities

    Full text link
    We find that sudden future singularities may also appear in spatially inhomogeneous Stephani models of the universe. They are temporal pressure singularities and may appear independently of the spatial finite density singularities already known to exist in these models. It is shown that the main advantage of the homogeneous sudden future singularities which is the fulfillment of the strong and weak energy conditions may not be the case for inhomogeneous models.Comment: REVTEX 4, 5 pages, no figures, a discussion of the most general case include

    Thermal Correction to the Molar Polarizability of a Boltzmann Gas

    Get PDF
    Metrology in atomic physics has been crucial for a number of advanced determinations of fundamental constants. In addition to very precise frequency measurements, the molar polarizability of an atomic gas has recently also been measured very accurately. Part of the motivation for the measurements is due to ongoing efforts to redefine the International System of Units (SI), for which an accurate value of the Boltzmann constant is needed. Here we calculate the dominant shift of the molar polarizability in an atomic gas due to thermal effects. It is given by the relativistic correction to the dipole interaction, which emerges when the probing electric field is Lorentz transformed into the rest frame of the atoms that undergo thermal motion. While this effect is small when compared to currently available experimental accuracy, the relativistic correction to the dipole interaction is much larger than the thermal shift of the polarizability induced by blackbody radiation

    Superfluidity of the BEC at finite temperature

    Full text link
    We use the classical fields approximation to study a translational flow of the condensate with respect to the thermal cloud in a weakly interacting Bose gas. We study both, subcritical and supercritical relative velocity cases and analyze in detail a state of stationary flow which is reached in the dynamics. This state corresponds to the thermal equilibrium, which is characterized by the relative velocity of the condensate and the thermal cloud. The superfluidity manifests itself in the existence of many thermal equilibria varying in (the value of this velocity) the relative velocity between the condensate and the thermal cloud. We pay a particular attention to excitation spectra in a phonon as well as in a particle regime. Finally, we introduce a measure of the amount of the superfluid fraction in a weakly interacting Bose gas, allowing for the precise distinction between the superfluid and the condensed fractions in a single and consistent framework.Comment: 8 pages, 5 figure

    Dispersive diffusion controlled distance dependent recombination in amorphous semiconductors

    Full text link
    The photoluminescence in amorphous semiconductors decays according to power law t−deltat^{-delta} at long times. The photoluminescence is controlled by dispersive transport of electrons. The latter is usually characterized by the power alphaalpha of the transient current observed in the time-of-flight experiments. Geminate recombination occurs by radiative tunneling which has a distance dependence. In this paper, we formulate ways to calculate reaction rates and survival probabilities in the case carriers execute dispersive diffusion with long-range reactivity. The method is applied to obtain tunneling recombination rates under dispersive diffusion. The theoretical condition of observing the relation delta=alpha/2+1delta = alpha/2 + 1 is obtained and theoretical recombination rates are compared to the kinetics of observed photoluminescence decay in the whole time range measured.Comment: To appear in Journal of Chemical Physic

    Evaluation of pain regression in patients with temporomandibular dysfunction treated by intra-articular platelet-rich plasma injections : a preliminary report

    Get PDF
    Objective. The objective of this study was to evaluate the regression of temporomandibular pain as a result of intra-articular injections of platelet-rich plasma (PRP) to patients with temporomandibular joint dysfunction previously subjected to prosthetic treatment. Materials and Methods. The baseline study material consisted of 10 patients, both males and females, aged 28 to 53 years, previously treated due to painful temporomandibular joint dysfunction using occlusal splints. All patients were carried out to a specialist functional assessment of the dysfunction using the Polish version of the RDC/TMD questionnaire axis I and II. Intra-articular injections were preceded by a preparation of PRP. The injection sites were determined by the method used during arthroscopic surgical procedures. Following aspiration, 0.5 mL of plasma was injected into each temporomandibular joint. Results. The comparison of the intensity of pain during all examinations suggests a beneficial effect of the procedure being performed as the mean VAS score was 6.5 at examination I, 2.8 at examination II, and 0.6 at examination III. Conclusion. Application of the intra-articular injections of platelet-rich plasma into the temporomandibular joints has a positive impact on the reduction of the intensity of pain experienced by patients treated for temporomandibular joint dysfunction
    • 

    corecore