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Thermal correction to the molar polarizability of a Boltzmann gas
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Metrology in atomic physics has been crucial for a number of advanced determinations of fundamental
constants. In addition to very precise frequency measurements, the molar polarizability of an atomic gas has
recently also been measured very accurately. Part of the motivation for the measurements is due to ongoing
efforts to redefine the International System of Units (SI), for which an accurate value of the Boltzmann constant
is needed. Here we calculate the dominant shift of the molar polarizability in an atomic gas due to thermal effects.
It is given by the relativistic correction to the dipole interaction, which emerges when the probing electric field
is Lorentz transformed into the rest frame of the atoms that undergo thermal motion. While this effect is small
when compared to currently available experimental accuracy, the relativistic correction to the dipole interaction
is much larger than the thermal shift of the polarizability induced by blackbody radiation.

DOI: 10.1103/PhysRevA.84.064102 PACS number(s): 06.20.Jr, 12.20.Ds, 51.30.+i, 47.80.Fg

I. INTRODUCTION

Spectacular progress in frequency metrology of simple
atoms such as hydrogen [1–3] and helium [4] has led to
advances in our understanding of fundamental constants [5]
and of their conceivable variation with time [6]. However,
transition frequencies are not the only quantities that can be
measured accurately using currently available experimental
methods. The (static) molar polarizability Aε of the helium-4
atom has been determined in Ref. [7] as

Aε = αd NA

3 ε0
= 0.5172535(47)

cm3

mol
, (1)

where NA is the Avogadro constant, ε0 is the vacuum
permittivity, and αd is the static electric dipole polarizability
of helium.

Recently, the topic of gas thermometry has received
considerable attention through efforts to accurately measure
the Boltzmann constant as the basis for a possible redefinition
of the kelvin in the International System of Units (SI) [8–16].
The kelvin can be defined by assigning an exact specified value
to the Boltzmann constant, and in order to move forward with
the redefinition, it is necessary to know the current measured
value as accurately as possible so the specified value is well
chosen [17].

The molar polarizability of helium-4 is also known from
theory, so an experiment that measures polarizability can
instead be interpreted as a measurement of pressure or a
determination of the Boltzmann constant kB . The principle
of the measurement of kB in [7] is as follows. The refractive
index εr of the helium gas is deduced by measuring microwave
resonance frequencies of a helium-filled quasispherical cavity
as a function of pressure and temperature. The index of
refraction is related to the molar density ρ of the helium and
its molar polarizability by the Clausius–Mossotti equation

εr − 1

εr + 2
≈ Aερ . (2)

In the evaluation of the measurement, a theoretical correction is
applied to this formula, which is mainly due to the diamagnetic

susceptibility of the helium [see Eq. (1) of Ref. [7]]. The
refractive index εr thus determines the product

Aερ = αd

3ε0
NAρ . (3)

Knowing Aε from Eq. (1), one can solve for ρ. The Boltz-
mann constant kB follows from the real-gas equation [“virial
equation of state of helium gas”; see Eq. (2) of Ref. [7]]. This
equation is approximated by the ideal-gas equation p ≈ R T ρ,
where R = kBNA is the molar gas constant. A crucial point of
the measurement [7] is that the resonator is maintained within
a few millikelvins of the triple point of water, which is defined
to be 273.16 K in the SI. Measuring the pressure, stabilizing
T , and having determined ρ, one can finally solve for R and
kB , determining the Boltzmann constant.

As outlined, an accurate value of the atomic polarizability
is a prerequisite for the measurement of kB . In a thermal
bath, the atom is subjected not only to the probing low-
frequency microwave radiation but also to thermal blackbody
radiation. By definition, the atomic polarizability describes a
second-order process where one of the two probing photons
is absorbed, while the other photon is emitted by the atom.
Additional interactions involve the absorption and emission
of blackbody photons and require fourth-order perturbation
theory. At room temperature (T = 300 K), the blackbody
radiation correction amounts to a relative shift [18] of the molar
polarizability of helium by 4.0 × 10−18. This relative shift is
numerically small, and it would be somewhat surprising if the
dominant thermal shift of the molar polarizability in an atomic
gas at room temperature were as small as this.

We thus analyze a further shift of the polarizability here,
which is due to the relativistic correction to the dipole
interaction due to the thermal motion of the atoms. In this
Brief Report, we use units with h̄ = c = ε0 = 1. Calculations
are reported in Sec. II, and conclusions are drawn in Sec. III.

II. CALCULATION

It has been known for some time that the interaction of
a compound system with an external electromagnetic field

064102-11050-2947/2011/84(6)/064102(3) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.84.064102


BRIEF REPORTS PHYSICAL REVIEW A 84, 064102 (2011)

receives a correction (“Röntgen term”) when the atom moves
with respect to the electromagnetic field. The thermal motion
of atoms in a typical atomic gas at room temperature follows
Boltzmann statistics because the scale of the interatomic
interactions (van der Waals and Casimir-Polder) is long
compared to the de Broglie wavelength of the moving atoms.
The well-known Röntgen term follows from the relativistic
analysis of the electromagnetic interaction of a compound
system with an external electromagnetic field �E.

The interaction of a compound system with the field is
described by the interaction Hamiltonian

HI = − �D · �E , Di =
N∑

a=0

ea xi
a , (4)

where the summation index a is over all constituent particles of
the system, with the value a = 0 being reserved for the atomic
nucleus. The charge of the ath particle is denoted as ea . By xi

a

we denote the ith Cartesian component of the distance of the
ath electron from the mass center. The total number of particles
in the compound system is N . The dipole polarizability of an
atom can be written as [Eq. (4) of Ref. [19]]

αd (ω) = e2

3

3∑
i=1

∑
±

〈�0|
(

N∑
n=1

xi
n

)

× 1

H − E0 ± ω

(
N∑

n=1

xi
n

)
|�0〉, (5)

where |�0〉 is the atomic ground state. Here the sum over
n = 1, . . . ,N is over all the atomic electrons (the atomic
nucleus is at the origin of the coordinate system). Evidently,
the dipole polarizability is essentially the second-order dipole
interaction. For a spherically symmetric ground state, all
Cartesian components i = 1,2,3 contribute equally to the
dynamic polarizability, and the factor of 1/3 results from
integration over angles in each component of the dipole matrix
element. For small frequencies ω → 0, the symmetric limit
±ω → 0 leads to the replacement

∑
±

1

H − E0 ± ω
→ 2

(
1

H − E0

)′
(6)

and

αd (ω) → αd (0) → αd , (7)

where we denote the reduced Green’s function that enters the
static polarizability by a prime [20].

For an atom in motion, as described in Ref. [21], the Lorentz
boost modifies the dipole interaction to be

H ′
I = − �D ·

[
�E + 1

M
( �� × �B) −

��
2M

( ��
M

· �E
)]

. (8)

Here M = ∑
a ma is the total mass of the compound system

(atom), �E and �B are the external electric and magnetic fields,
respectively, and �� = ∑

a �pa is the total momentum of the
compound system. The term proportional to the magnetic field
vanishes after angular averaging over the directions of motion
of the atoms. For the term quadratic in ��, the angular averaging

leads to a factor 1/3 in the effective dipole interaction, leading
to the correction

H ′
I = − �D ·

[
�E −

��
2M

( ��
M

· �E
)]

→ − �D · �E
(

1 − �v2

6c2

)
, (9)

where the factor of c is restored in the denominator.
The magnitude of the dipole interaction correction has a

simple physical interpretation. The dipole interaction of an
atom is essentially the energy shift due to an applied electric
field. In its rest frame, the moving atom sees a boosted electric
field, which, after averaging over directions of the velocity,
yields a correction factor of (1 + v2/3c2) to the dipole energy.
Transformation of the dipole energy in the rest frame of the
atom to the laboratory frame yields an additional correction
factor of (1 − v2/2c2) for a net correction of (1 − v2/6c2)
for the effective dipole interaction as given in Eq. (9).
Evidently, the dipole correction has not been examined in
detail beyond the linear interaction, so we apply the same
argument to the effective dipole polarizability. In this case, the
interaction is quadratic in the electric field, so the correction
factor is (1 + 2v2/3c2) for the boosted field strength. The
transformation to the laboratory frame is the same, so the
net correction is (1 + v2/6c2). With this factor, the effective
dipole polarizability of the moving atom is

α′
d = αd

(
1 + v2

6c2

)
. (10)

We are now in a position to average over the thermal
ensemble. With β = 1/(kBT ), where kB is the Boltzmann con-
stant and T is the thermodynamic temperature, the Boltzmann
velocity distribution is

f (�v) =
(

β M

2π

)3/2

exp

(
− β M �v2

2

)
, (11)

so that ∫
d3v f (�v) = 1. (12)

In accordance with the equipartition theorem, we find

〈�v2〉 = 3

β M
= 3 kB T

M
, (13)

so that the correction to the polarizability is

α′
d → αd

(
1 + kB T

2Mc2

)
≡ αd (1 + δ), (14)

where the last expression serves as a definition of δ. For room
temperature T = 300 K and helium atoms, using physical
constants from Ref. [5], we have a relative shift of

δ = kB T

2Mc2
= 3.47 × 10−12. (15)

This effect is still small when compared to the experimental
accuracy reported in Ref. [7]. However, it turns out to be much
larger than the shift of the polarizability due to blackbody
radiation, which was previously calculated in Ref. [18].
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III. CONCLUSIONS

High-precision measurements of the molar polarizability
of atoms in gaseous environments have become important for
the determination of fundamental constants (e.g., the Boltz-
mann constant) and for pressure and temperature metrology.
The thermal corrections to the molar polarizability are of
importance because they represent effects that cannot be easily
brought under experimental control and would require difficult
adjustments of the experiments unless they can be shown to
be negligible.

For an atom at rest, immersed in a thermal bath, the
blackbody radiation correction to the polarizability [18] is due
to a fourth-order interaction with the electromagnetic field
(two blackbody photons and two photons of the probing field)
and is numerically small. However, the measurement of the

polarizability usually proceeds in a Boltzmann gas, where
atoms are in thermal motion. In this Brief Report, we find
that the dominant thermal shift of the molar polarizability in
the latter case is due to the Röntgen term, i.e., due to the
necessity of transforming the probing electric field into the
rest frame of the moving atom by a Lorentz transformation and
transforming the energy shift back into the laboratory frame.
The corresponding shift is given in Eq. (15) and amounts to
δ = 3.47 × 10−12 for helium at room temperature.
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