167 research outputs found

    Nb-doped TiO2 thin films deposited by spray pyrolysis method

    Get PDF
    Undoped TiO2 and Nb-doped TiO2 thin films have been deposited by spray pyrolysis method on ITO/glass substrates. All the as-deposited films are amorphous, as shown by X-Ray Diffraction. Under certain conditions of heat-treatment in air, the films deposited by pyrolysis became pure anatase. The hydrophilic properties of all the films were investigated, and a comparison was made as a function of the heat treatment, and as a function of Nb doping. Contact angles lower then 3 deg. have been obtained, after irradiation times specific for each film

    Electronic Stopping of Slow Protons in Oxides: Scaling Properties

    Full text link
    Electronic stopping of slow protons in ZnO, VO2 (metal and semiconductor phases), HfO2, and Ta2O5 was investigated experimentally. As a comparison of the resulting stopping cross sections (SCS) to data for Al2O3 and SiO2 reveals, electronic stopping of slow protons does not correlate with electronic properties of the specific material such as band gap energies. Instead, the oxygen 2p states are decisive, as corroborated by density functional theory calculations of the electronic densities of states. Hence, at low ion velocities the SCS of an oxide primarily scales with its oxygen density

    On the properties of aluminium doped zinc oxide thin films deposited on plastic substrates from ceramic targets

    Get PDF
    We report on the deposition of Al doped ZnO (AZO) thin films on unheated polyethylene terephthalate (PET) substrates by pulsed laser deposition technique using a UV excimer laser and Al2O3:ZnO ceramic targets (1.5 and 2 wt% Al2O3). The deposited AZO films have been investigated by atomic force microscopy, scanning electron microscopy, X-ray diffraction, and optical spectrophotometry. Films present excellent optical and electrical properties (transmission in the visible range T > 85%; resistivity at room temperature rho = 1.3 x 10(-3) Omega cm) as electrodes for plastic solar cells. A good correlation was found between deposition conditions (laser fluence) and structural, morphological, optical and electrical propertie

    Fixed-Points for Quantitative Equational Logics

    Get PDF
    We develop a fixed-point extension of quantitative equational logic and give semantics in one-bounded complete quantitative algebras. Unlike previous related work about fixed-points in metric spaces, we are working with the notion of approximate equality rather than exact equality. The result is a novel theory of fixed points which can not only provide solutions to the traditional fixed-point equations but we can also define the rate of convergence to the fixed point. We show that such a theory is the quantitative analogue of a Conway theory and also of an iteration theory; and it reflects the metric coinduction principle. We study the Bellman equation for a Markov decision process as an illustrative example

    Gas Sensing Materials Based on TiO2 Thin Films

    Get PDF
    Ti O 2 thin films were prepared by spray pyrolysis using a solution of titanium tetrachloride and ethyl alcohol. The deposition was performed onto different substrates (silicon, quartz, glass) maintained at the same temperature, 270 ° C . After annealing, a predominant rutile structure is obtained for films deposited onto silicon and quartz substrates, as revealed by x-ray diffraction patterns. The Ti O 2 films were exposed to different gases, at different temperatures, in order to evaluate their gas sensitivity. The optimum operating temperatures, showing the highest gas sensitivity, were determined for some gases (acetone, ethanol, methane, and liquefied petroleum gas)

    The substrate temperature dependent electrical properties of titanium dioxide thin films

    Get PDF
    Titanium dioxide thin films were obtained by a dc sputtering technique onto heated glass substrates. The relationship between the substrate temperature and the electrical properties of the films was investigated. Electrical resistivity measurements showed that three types of conduction channels contribute to conduction mechanism in the temperature range of 13-320 K. The temperature dependence of electrical resistivity between 150 and 320 K indicated that electrical conductioninthe films was controlled by potential barriers caused by depletion of carriers at grain boundaries. The conduction mechanism of the films was shifted from grain boundary scattering dominated band conduction to the nearest neighbor hopping conduction at temperatures between 55 and 150 K. Below 55 K, the temperature dependence of electrical resistivity shows variable range hopping conduction. The correlation between the substrate temperature and resistivity behaviorisdiscussed by analyzing the physical plausibility of the hopping parameters and material properties derived by applying different conduction models. With these analyses, various electrical parameters of the present samples such as barrier height, donor concentration, density of states at the Fermi level, acceptor concentration and compensation ratio were determined. Their values as a function of substrate temperature were compared. © Springer Science+Business Media, LLC 2009

    Photocatalytic properties of Nb doped TiO2 thin films

    Get PDF
    Date du colloque : 09/2014International audienc

    Sum and tensor of quantitative effects

    Get PDF
    Inspired by the seminal work of Hyland, Plotkin, and Power on the combination of algebraic computational effects via sum and tensor, we develop an analogous theory for the combination of quantitative algebraic effects. Quantitative algebraic effects are monadic computational effects on categories of metric spaces, which, moreover, have an algebraic presentation in the form of quantitative equational theories, a logical framework introduced by Mardare, Panangaden, and Plotkin that generalises equational logic to account for a concept of approximate equality. As our main result, we show that the sum and tensor of two quantitative equational theories correspond to the categorical sum (i.e., coproduct) and tensor, respectively, of their effects qua monads. We further give a theory of quantitative effect transformers based on these two operations, essentially providing quantitative analogues to the following monad transformers due to Moggi: exception, resumption, reader, and writer transformers. Finally, as an application, we provide the first quantitative algebraic axiomatizations to the following coalgebraic structures: Markov processes, labelled Markov processes, Mealy machines, and Markov decision processes, each endowed with their respective bisimilarity metrics. Apart from the intrinsic interest in these axiomatizations, it is pleasing they have been obtained as the composition, via sum and tensor, of simpler quantitative equational theories
    corecore