70 research outputs found

    In Vivo Biotransformation of 3,3′,4,4′-Tetrachlorobiphenyl by Whole Plants−Poplars and Switchgrass

    Get PDF
    Polychlorinated biphenyls (PCBs) are widely distributed persistent organic pollutants. In vitro research has shown that plant cell cultures might transform lower chlorinated congeners to hydroxylated PCBs, but there are few studies on in vivo metabolism of PCBs by intact whole plants. In this research, poplar plants (Populus deltoides × nigra, DN34) and switchgrass (Panicum vigratum, Alamo) were hydroponically exposed to 3,3′,4,4′-tetrachlorobiphenyl (CB77). Metabolism in plants occurred rapidly, and metabolites were detected after only a 24 h exposure. Rearrangement of chlorine atoms and dechlorination of CB77 by plants was unexpectedly observed. In addition, poplars were able to hydroxylate CB77 and the metabolite 6-hydroxy-3,3′,4,4′-tetrachlorobiphenyl (6-OH-CB77) was identified and quantified. Hybrid poplar was able to hydroxylate CB77, but switchgrass was not, suggesting that enzymatic transformations are plant specific. Sulfur-containing metabolites (from the action of sulfotransferases) were investigated in this study, but they were not detected in either poplar or switchgrass

    RBS, PIXE, Ion-Microbeam and SR-FTIR Analyses of Pottery Fragments from Azerbaijan

    Get PDF
    The present work is aimed at the investigation of the ceramic bulk and pigmented glazed surfaces of ancient potteries dating back to XIX century A.D. and coming from the charming archeological site located in the Medieval Agsu town (Azerbaijan), a geographic area of special interest due to the ancient commercial routes between China, Asia Minor, and Europe. For the purpose of the study, complementary investigation tools have been exploited: non-destructive or micro-destructive investigation at elemental level by ion beam analysis (IBA) techniques, by using Rutherford Backscattering Spectrometry (RBS), Proton-Induced X-ray Emission (PIXE) spectroscopy and ion-microbeam analysis, and chemical characterization at microscopic level, by means of synchrotron radiation (SR) Fourier transform infrared (FTIR) microspectroscopy. The acquired information reveals useful for the identification of the provenance, the reconstruction of the firing technology, and finally, the identification of the pigment was used as a colorant of the glaze

    Classic yin and yang tonic formula for osteopenia: study protocol for a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Osteoporosis is a growing worldwide problem, with the greatest burden resulting from fractures. Nevertheless, the majority of fractures in adults occur in those with "osteopenia" (bone mineral density (BMD) only moderately lower than young normal individuals). Since long-term drug therapy is an expensive option with uncertain consequences and side effects, natural herbal therapy offers an attractive alternative. The purpose of this study is to evaluate the effect on BMD and safety of the Classic Yin and Yang Tonic Formula for treatment of osteopenia and to investigate the mechanism by which this efficacy is achieved.</p> <p>Methods/design</p> <p>We propose a multicenter double-blind randomized placebo-controlled trial to evaluate the efficacy and safety of the Classic Yin and Yang Tonic Formula for the treatment of osteopenia. Participants aged 55 to 75 with low bone mineral density (T-score between -1 and -2.5) and kidney deficiency in TCM will be included and randomly allocated into two groups: treatment group and control group. Participants in the treatment group will be treated with Classic Yin and Yang Tonic Granule, while the controlled group will receive placebo. Primary outcome measure will be BMD of the lumbar spine and proximal femur using dual-energy X-ray absorptiometry. Secondary outcomes will include pain intensity measured with visual analogue scales, quality of life, serum markers of bone metabolism, indices of Neuro-endocrino-immune network and safety.</p> <p>Discussion</p> <p>If the Classic Yin and Yang Tonic Formula can increase bone mass without adverse effects, it may be a novel strategy for the treatment of osteoporosis. Furthermore, the mechanism of the Chinese medical formula for osteoporosis will be partially elucidated.</p> <p>Trial registration</p> <p>This study is registered at ClinicalTrials.gov, <a href="http://www.clinicaltrials.gov/ct2/show/NCT01271647">NCT01271647</a>.</p

    Co-encapsulation of human serum albumin and superparamagnetic iron oxide in PLGA nanoparticles: Part I. Effect of process variables on the mean size

    Get PDF
    PLGA (poly d,l-lactic-co-glycolic acid) nanoparticles (NPs) encapsulating magnetite nanoparticles (MNPs) along with a model drug human serum albumin (HSA) were prepared by double emulsion solvent evaporation method. This Part I will focus on size and size distribution of prepared NPs, whereas encapsulation efficiency will be discussed in Part II. It was found that mean hydrodynamic particle size was influenced by five important process variables. To explore their effects, a five-factorial, three-level experimental design and statistical analysis were carried out using STATISTICA® software. Effect of process variables on the mean size of nanoparticles was investigated and finally conditions to minimize size of NPs were proposed. GAMS™/MINOS software was used for optimization. The mean hydrodynamic size of nanoparticles ranged from 115 to 329 nm depending on the process conditions. Smallest possible mean particle size can be achieved by using low polymer concentration and high dispersion energy (enough sonication time) along with small aqueous/organic volume ratio

    SME insolvency, bankruptcy, and survival: an examination of retrenchment strategies

    Get PDF
    A key assertion in the turnaround literature is that when survival is threatened, it is necessary to undertake asset and cost retrenchment strategies that stabilise the performance decline and provide a base for survival and recovery. Correcting for methodological weaknesses in the literature, this study of Spanish SMEs finds that retrenchment of inventory and employees is associated with liquidation. Furthermore, neither intangible asset nor tangible asset retrenchment is associated with survival. Only retrenchment of debt is associated with survival. These results challenge conventional wisdom on retrenchment in turnaround situations. Automatic, across-the-board retrenchment is not a universal panacea to achieve turnaround and should not be implemented as a reflex response to insolvency. Instead, managers of insolvent firms should focus on liquidity and operational improvements, which result in debt reduction. Great care should be taken with the need for, and the extent of, retrenchment in inventory and employees

    A study of the structural properties of GaN implanted by various rare-earth ions

    No full text
    GaN layers with h0001i crystallographic orientation, grown by low-pressure metal-organic vapourphase epitaxy (MOVPE) on c-plane sapphire substrates, were implanted with 200 and 400 keV Sm+, Tm+, Eu+, Tb+ and Ho+ ions at fluencies of 1 1015–1 1016 cm2. The composition of the ion-implanted layers and concentration profiles of the implanted atoms were studied by Rutherford Back-Scattering spectrometry (RBS). The profiles were compared to SRIM 2008 simulations. The structural properties of the ion-implanted layers were characterised by RBS-channelling and Raman spectroscopy. Changes in the surface morphology caused by the ion implantation were examined by Atomic Force Microscopy (AFM). A structural analysis showed a high disorder of the atoms close to the amorphised structure at the surface layer above an implantation fluence of 5 1015 cm2 while lower disorder density was observed in the bulk according to the projected range of 400 keV ions. The post-implantation annealing induced significant changes only in the Sm and Eu depth profiles; a diffusion of rare-earths implanted at a fluence of 5 1015 cm2 to the surface was observed. The annealing caused the reconstruction of the surface layer accompanied by surface-roughness enhancement

    Functional evaluation of prevascularization in one-stage versus two-stage tissue engineering approach of human bio-artificial muscle

    No full text
    A common shortcoming of current tissue engineered constructs is the lack of a functional vasculature, limiting their size and functionality. Prevascularization is a possible strategy to introduce vascular networks in these constructs. It includes among others co-culturing target cells with endothelial (precursor) cells that are able to form endothelial networks through vasculogenesis. In this paper, we compared two different prevascularization approaches of bio-artificial skeletal muscle tissue (BAM) in vitro and in vivo. In a one-stage approach, human muscle cells were directly co-cultured with endothelial cells in 3D. In a two-stage approach, a one week old BAM containing differentiated myotubes was coated with a fibrin hydrogel containing endothelial cells. The obtained endothelial networks were longer and better interconnected with the two-stage approach. We evaluated whether prevascularization had a beneficial effect on in vivo perfusion of the BAM and improved myotube survival by implantation on the fascia of the latissimus dorsi muscle of NOD/SCID mice for 5 or 14 d. Also in vivo, the two-stage approach displayed the highest vascular density. At day 14, anastomosis of implanted endothelial networks with the host vasculature was apparent. BAMs without endothelial networks contained longer and thicker myotubes in vitro, but their morphology degraded in vivo. In contrast, maintenance of myotube morphology was well supported in the two-stage prevascularized BAMs. To conclude, a two-stage prevascularization approach for muscle engineering improved the vascular density in the construct and supported myotube maintenance in vivo.status: publishe

    The characterisation of polydimethylsiloxane containing gold nanoparticles as a function of curing time

    No full text
    Spherical gold nanoparticles (NPs), 10 nm in diameter, have been dispersed in a type of polydimethylsiloxane, whose polymerisation requires accurate temperature control. At the temperature of 100°C, the polymerisation of the polydimethylsiloxane matrix is completed in 15 min, whereas at room temperature (∼20°C), it takes about 24–48 h. Gold NPs were incorporated into polydimethylsiloxane after which the resulting nanocomposites were placed in an oven preheated to 100°C for different curing times. Both porous and bulk nanocomposites were obtained using a bottom-up approach. Polydimethylsiloxane (PDMS) nanocomposites with the weight-percentage concentration of 0.2% of Au NPs were cured for 15, 30 and 45 min. Different curing times have affected the Au-NP properties. The network of porous PDMS nanocomposite promotes a uniform anchoring of the gold NPs. The porous PDMS nanocomposite samples, prepared using the sugar-template method, have been compared with the bulk counterpart to obtain a full characterisation of the material. The dependence of the morphological and electrical properties of gold NPs on their size has been studied by atomic-force microscopy and two-point-probe electrical-conductivity measurement. The optical performance of the bulk PDMS nanocomposites has been analysed by ultraviolet–visible (UV–vis) spectroscopy in the transmission mode. An enhancement of the absorption was observed after the increase of both the nanocomposite-curing time and the percentage of the Au NPs used as fillers. The fabricated nanocomposite can be used to manufacture optical-sensing devices, switches in optoelectronics and optical waveguides
    corecore