71 research outputs found
Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm
We present a new measurement of the positive muon magnetic anomaly, aμ(gμ-2)/2, from the Fermilab Muon g-2 Experiment using data collected in 2019 and 2020. We have analyzed more than 4 times the number of positrons from muon decay than in our previous result from 2018 data. The systematic error is reduced by more than a factor of 2 due to better running conditions, a more stable beam, and improved knowledge of the magnetic field weighted by the muon distribution, p′, and of the anomalous precession frequency corrected for beam dynamics effects, ωa. From the ratio ωa/p′, together with precisely determined external parameters, we determine aμ=116 592 057(25)×10-11 (0.21 ppm). Combining this result with our previous result from the 2018 data, we obtain aμ(FNAL)=116 592 055(24)×10-11 (0.20 ppm). The new experimental world average is aμ(exp)=116 592 059(22)×10-11 (0.19 ppm), which represents a factor of 2 improvement in precision.</p
Measurement of the Positive Muon Anomalous Magnetic Moment to 127 ppb
A new measurement of the magnetic anomaly of the positive muon is presented based on data taken from 2020 to 2023 by the Muon Experiment at Fermi National Accelerator Laboratory (FNAL). This dataset contains over 2.5 times the total statistics of our previous results. From the ratio of the precession frequencies for muons and protons in our storage ring magnetic field, together with precisely known ratios of fundamental constants, we determine (139 ppb) for the new datasets, and (127 ppb) when combined with our previous results. The new experimental world average, dominated by the measurements at FNAL, is (124 ppb). The measurements at FNAL have improved the precision on the world average by over a factor of four
Detailed Report on the Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm
We present details on a new measurement of the muon magnetic anomaly, . The result is based on positive muon data taken at Fermilab's
Muon Campus during the 2019 and 2020 accelerator runs. The measurement uses
GeV polarized muons stored in a -m-radius storage ring with a
T uniform magnetic field. The value of is determined from the
measured difference between the muon spin precession frequency and its
cyclotron frequency. This difference is normalized to the strength of the
magnetic field, measured using Nuclear Magnetic Resonance (NMR). The ratio is
then corrected for small contributions from beam motion, beam dispersion, and
transient magnetic fields. We measure (0.21 ppm). This is the world's most precise measurement of this
quantity and represents a factor of improvement over our previous result
based on the 2018 dataset. In combination, the two datasets yield
(0.20 ppm). Combining
this with the measurements from Brookhaven National Laboratory for both
positive and negative muons, the new world average is (exp) (0.19 ppm).Comment: 48 pages, 29 figures; 4 pages of Supplement Material; version
accepted for publication in Physical Review
An overview of non-native species invasions in urban river corridors
Recent studies have highlighted cities as prime locations for the introduction, establishment, and spread of non-native and invasive species. As the hydrological arteries of cities, urban river corridors have an important role to play in influencing species invasions. This overview examines existing literature to consider (a) how the landscape functions of urban river corridors (habitat, conduit, barrier/filter, sink, and source) relate to species invasions; (b) the organismal and geographical foci of research into non-native species invasions along urban rivers; and (c) the need to more fully consider the roles that non-native species may play in the recombinant communities of novel urban river ecosystems. The review ends with an identification of research priorities at the intersection of urban river corridor function and invasion biology.</p
Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm
We present a new measurement of the positive muon magnetic anomaly, a_{μ}≡(g_{μ}-2)/2, from the Fermilab Muon g-2 Experiment using data collected in 2019 and 2020. We have analyzed more than 4 times the number of positrons from muon decay than in our previous result from 2018 data. The systematic error is reduced by more than a factor of 2 due to better running conditions, a more stable beam, and improved knowledge of the magnetic field weighted by the muon distribution, ω[over ˜]_{p}^{'}, and of the anomalous precession frequency corrected for beam dynamics effects, ω_{a}. From the ratio ω_{a}/ω[over ˜]_{p}^{'}, together with precisely determined external parameters, we determine a_{μ}=116 592 057(25)×10^{-11} (0.21 ppm). Combining this result with our previous result from the 2018 data, we obtain a_{μ}(FNAL)=116 592 055(24)×10^{-11} (0.20 ppm). The new experimental world average is a_{μ}(exp)=116 592 059(22)×10^{-11} (0.19 ppm), which represents a factor of 2 improvement in precision
Beam dynamics corrections to the Run-1 measurement of the muon anomalous magnetic moment at Fermilab
This paper presents the beam dynamics systematic corrections and their uncertainties for the Run-1 data set of the Fermilab Muon g-2 Experiment. Two corrections to the measured muon precession frequency are associated with well-known effects owing to the use of electrostatic quadrupole (ESQ) vertical focusing in the storage ring. An average vertically oriented motional magnetic field is felt by relativistic muons passing transversely through the radial electric field components created by the ESQ system. The correction depends on the stored momentum distribution and the tunes of the ring, which has relatively weak vertical focusing. Vertical betatron motions imply that the muons do not orbit the ring in a plane exactly orthogonal to the vertical magnetic field direction. A correction is necessary to account for an average pitch angle associated with their trajectories. A third small correction is necessary because muons that escape the ring during the storage time are slightly biased in initial spin phase compared to the parent distribution. Finally, because two high-voltage resistors in the ESQ network had longer than designed RC time constants, the vertical and horizontal centroids and envelopes of the stored muon beam drifted slightly, but coherently, during each storage ring fill. This led to the discovery of an important phase-acceptance relationship that requires a correction. The sum of the corrections to is 0.50 0.09 ppm; the uncertainty is small compared to the 0.43 ppm statistical precision of
Measurement of the anomalous precession frequency of the muon in the Fermilab Muon g-2 Experiment
The Muon g-2 Experiment at Fermi National Accelerator Laboratory (FNAL) has
measured the muon anomalous precession frequency to an uncertainty
of 434 parts per billion (ppb), statistical, and 56 ppb, systematic, with data
collected in four storage ring configurations during its first physics run in
2018. When combined with a precision measurement of the magnetic field of the
experiment's muon storage ring, the precession frequency measurement determines
a muon magnetic anomaly of (0.46 ppm). This article describes the multiple techniques employed
in the reconstruction, analysis and fitting of the data to measure the
precession frequency. It also presents the averaging of the results from the
eleven separate determinations of \omega_a, and the systematic uncertainties on
the result.Comment: 29 pages, 19 figures. Published in Physical Review
Magnetic Field Measurement and Analysis for the Muon g-2 Experiment at Fermilab
The Fermi National Accelerator Laboratory has measured the anomalous precession frequency of the muon to a combined precision of 0.46 parts per million with data collected during its first physics run in 2018. This paper documents the measurement of the magnetic field in the muon storage ring. The magnetic field is monitored by nuclear magnetic resonance systems and calibrated in terms of the equivalent proton spin precession frequency in a spherical water sample at 34.7C. The measured field is weighted by the muon distribution resulting in , the denominator in the ratio / that together with known fundamental constants yields . The reported uncertainty on for the Run-1 data set is 114 ppb consisting of uncertainty contributions from frequency extraction, calibration, mapping, tracking, and averaging of 56 ppb, and contributions from fast transient fields of 99 ppb
Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm
We present the first results of the Fermilab Muon g-2 Experiment for the
positive muon magnetic anomaly . The anomaly is
determined from the precision measurements of two angular frequencies.
Intensity variation of high-energy positrons from muon decays directly encodes
the difference frequency between the spin-precession and cyclotron
frequencies for polarized muons in a magnetic storage ring. The storage ring
magnetic field is measured using nuclear magnetic resonance probes calibrated
in terms of the equivalent proton spin precession frequency
in a spherical water sample at 34.7C. The
ratio , together with known fundamental
constants, determines
(0.46\,ppm). The result is 3.3 standard deviations greater than the standard
model prediction and is in excellent agreement with the previous Brookhaven
National Laboratory (BNL) E821 measurement. After combination with previous
measurements of both and , the new experimental average of
(0.35\,ppm) increases the
tension between experiment and theory to 4.2 standard deviationsComment: 10 pages; 4 figure
- …
