1,070 research outputs found

    Interferometric Upper Limits on Millimeter Polarization of the Disks around DG Tau, GM Aur, and MWC 480

    Full text link
    Millimeter-wavelength polarization measurements offer a promising method for probing the geometry of magnetic fields in circumstellar disks. Single dish observations and theoretical work have hinted that magnetic field geometries might be predominantly toroidal, and that disks should exhibit millimeter polarization fractions of 2-3%. While subsequent work has not confirmed these high polarization fractions, either the wavelength of observation or the target sources differed from the original observations. Here we present new polarimetric observations of three nearby circumstellar disks at 2" resolution with the Submillimeter Array (SMA) and the Combined Array for Research in Millimeter Astronomy (CARMA). We reobserve GM Aur and DG Tau, the systems in which millimeter polarization detections have been claimed. Despite higher resolution and sensitivity at wavelengths similar to the previous observations, the new observations do not show significant polarization. We also add observations of a new HAeBe system, MWC 480. These observations demonstrate that a very low (100 AU) scales in bright circumstellar disks. We suggest that high-resolution observations may be worthwhile to probe magnetic field structure on linear distances smaller than the disk scale height, as well as in regions closer to the star that may have larger MRI-induced magnetic field strengths.Comment: 7 pages, 3 figures, accepted for publication in A

    The Structure of the DoAr 25 Circumstellar Disk

    Full text link
    We present high spatial resolution (< 0.3" = 40AU)SubmillimeterArrayobservationsofthe865microncontinuumemissionfromthecircumstellardiskaroundtheyoungstarDoAr25.Despiteitsbrightmillimeteremission,thissourceexhibitsonlyacomparativelysmallinfraredexcessandlowaccretionrate,suggestingthatthematerialandstructuralpropertiesoftheinnerdiskmaybeinanadvancedstateofevolution.AsimplemodelofthephysicalconditionsinthediskisderivedfromthesubmillimetervisibilitiesandthecompletespectralenergydistributionusingaMonteCarloradiativetransfercode.Forthestandardassumptionofahomogeneousgrainsizedistributionatalldiskradii,theresultsindicateashallowsurfacedensityprofile, AU) Submillimeter Array observations of the 865 micron continuum emission from the circumstellar disk around the young star DoAr 25. Despite its bright millimeter emission, this source exhibits only a comparatively small infrared excess and low accretion rate, suggesting that the material and structural properties of the inner disk may be in an advanced state of evolution. A simple model of the physical conditions in the disk is derived from the submillimeter visibilities and the complete spectral energy distribution using a Monte Carlo radiative transfer code. For the standard assumption of a homogeneous grain size distribution at all disk radii, the results indicate a shallow surface density profile, \Sigma \propto r^{-p}$ with p = 0.34, significantly less steep than a steady-state accretion disk (p = 1) or the often adopted minimum mass solar nebula (p = 1.5). Even though the total mass of material is large (M_d = 0.10 M_sun), the densities inferred in the inner disk for such a model may be too low to facilitate any mode of planet formation. However, alternative models with steeper density gradients (p = 1) can explain the observations equally well if substantial grain growth in the planet formation region (r < 40 AU) has occurred. We discuss these data in the context of such models with dust properties that vary with radius and highlight their implications for understanding disk evolution and the early stages of planet formation.Comment: ApJL in pres

    ALMA and VLA Observations of the HD 141569 System

    Full text link
    We present VLA 9 mm (33 GHz) observations of the HD 141569 system from semester 16A. The observations achieve a resolution of 0.25 arcsec (28\sim28 au) and a sensitivity of 4.7 μJy beam14.7~\mu \rm Jy~beam^{-1}. We find (1) a 52±5 μ52\pm 5~\muJy point source at the location of HD 141569A that shows potential variability, (2) the detected flux is contained within the SED-inferred central clearing of the disc meaning the spectral index of the dust disc is steeper than previously inferred, and (3) the M dwarf companions are also detected and variable. Previous lower-resolution VLA observations (semester 14A) found a higher flux density, interpreted as solely dust emission. When combined with ALMA observations, the VLA 14A observations suggested the spectral index and grain size distribution of HD 141569's disc was shallow and an outlier among debris systems. Using archival ALMA observations of HD 141569 at 0.87 mm and 2.9 mm we find a dust spectral index of αmm=1.81±0.20\alpha_{\rm mm} = 1.81\pm 0.20. The VLA 16A flux corresponds to a brightness temperature of 5×106\sim5\times10^{6} K, suggesting strong non-disc emission is affecting the inferred grain properties. The VLA 16A flux density of the M2V companion HD 141569B is 149±9 μ149\pm9~\muJy, corresponding to a brightness temperature of 2×108\sim2\times10^{8} K and suggesting significant stellar variability when compared to the VLA14A observations, which are smaller by a factor of 6\sim6.Comment: Accepted for publication in MNRAS, 8 pages, 6 figure

    Increased H2_2CO production in the outer disk around HD 163296

    Get PDF
    Three formaldehyde lines were observed (H2_2CO 303_{03}--202_{02}, H2_2CO 322_{22}--221_{21}, and H2_2CO 321_{21}--220_{20}) in the protoplanetary disk around the Herbig Ae star HD 163296 with ALMA at 0.5 arcsecond (60 AU) spatial resolution. H2_2CO 303_{03}--202_{02} was readily detected via imaging, while the weaker H2_2CO 322_{22}--221_{21} and H2_2CO 321_{21}--220_{20} lines required matched filter analysis to detect. H2_2CO is present throughout most of the gaseous disk, extending out to 550 AU. An apparent 50 AU inner radius of the H2_2CO emission is likely caused by an optically thick dust continuum. The H2_2CO radial intensity profile shows a peak at 100 AU and a secondary bump at around 300 AU, suggesting increased production in the outer disk. Different parameterizations of the H2_2CO abundance were compared to the observed visibilities with χ2\chi^2 minimization, using either a characteristic temperature, a characteristic radius or a radial power law index to describe the H2_2CO chemistry. Similar models were applied to ALMA Science Verification data of C18^{18}O. In all modeling scenarios, fits to the H2_2CO data show an increased abundance in the outer disk. The overall best-fit H2_2CO model shows a factor of two enhancement beyond a radius of 270±\pm20 AU, with an inner abundance of 2 ⁣ ⁣5×10122\!-\!5 \times 10^{-12}. The H2_2CO emitting region has a lower limit on the kinetic temperature of T>20T > 20 K. The C18^{18}O modeling suggests an order of magnitude depletion in the outer disk and an abundance of 4 ⁣ ⁣12×1084\!-\!12 \times 10^{-8} in the inner disk. The increase in H2_2CO outer disk emission could be a result of hydrogenation of CO ices on dust grains that are then sublimated via thermal desorption or UV photodesorption, or more efficient gas-phase production beyond about 300 AU if CO is photodisocciated in this region

    Exploring DCO+^+ as a tracer of thermal inversion in the disk around the Herbig Ae star HD163296

    Get PDF
    We aim to reproduce the DCO+^+ emission in the disk around HD163296 using a simple 2D chemical model for the formation of DCO+^+ through the cold deuteration channel and a parametric treatment of the warm deuteration channel. We use data from ALMA in band 6 to obtain a resolved spectral imaging data cube of the DCO+^+ JJ=3--2 line in HD163296 with a synthesized beam of 0."53×\times 0."42. We adopt a physical structure of the disk from the literature that reproduces the spectral energy distribution. We then apply a simplified chemical network for the formation of DCO+^+ that uses the physical structure of the disk as parameters along with a CO abundance profile, a constant HD abundance and a constant ionization rate. Finally, from the resulting DCO+^+ abundances, we calculate the non-LTE emission using the 3D radiative transfer code LIME. The observed DCO+^+ emission is reproduced by a model with cold deuteration producing abundances up to 1.6×10111.6\times 10^{-11}. Warm deuteration, at a constant abundance of 3.2×10123.2\times 10^{-12}, becomes fully effective below 32 K and tapers off at higher temperatures, reproducing the lack of DCO+^+ inside 90 AU. Throughout the DCO+^+ emitting zone a CO abundance of 2×1072\times 10^{-7} is found, with \sim99\% of it frozen out below 19 K. At radii where both cold and warm deuteration are active, warm deuteration contributes up to 20\% of DCO+^+, consistent with detailed chemical models. The decrease of DCO+^+ at large radii is attributed to a temperature inversion at 250 AU, which raises temperatures above values where cold deuteration operates. Increased photodesorption may also limit the radial extent of DCO+^+. The corresponding return of the DCO+^+ layer to the midplane, together with a radially increasing ionization fraction, reproduces the local DCO+^+ emission maximum at \sim260 AU.Comment: 9 pages, 5 figures, accepted 7th July 201

    A new twist to an old story: HE 0450-2958, and the ULIRG\to (optically bright QSO) transition hypothesis

    Full text link
    We report on interferometric imaging of the CO J=1--0 and J=3--2 line emission from the controversial QSO/galaxy pair HE 0450--2958. {\it The detected CO J=1--0 line emission is found associated with the disturbed companion galaxy not the luminous QSO,} and implies Mgal(H2)(12)×1010M\rm M_{gal}(H_2)\sim (1-2)\times 10^{10} M_{\odot}, which is \ga 30% of the dynamical mass in its CO-luminous region. Fueled by this large gas reservoir this galaxy is the site of an intense starburst with SFR370Myr1\rm SFR\sim 370 M_{\odot} yr^{-1}, placing it firmly on the upper gas-rich/star-forming end of Ultra Luminous Infrared Galaxies (ULIRGs, LIR>1012L\rm L_{IR}>10^{12} L_{\odot}). This makes HE 0450--2958 the first case of extreme starburst and powerful QSO activity, intimately linked (triggered by a strong interaction) but not coincident. The lack of CO emission towards the QSO itself renews the controversy regarding its host galaxy by making a gas-rich spiral (the typical host of Narrow Line Seyfert~1 AGNs) less likely. Finally, given that HE 0450--2958 and similar IR-warm QSOs are considered typical ULIRG\to (optically bright QSO) transition candidates, our results raise the possibility that some may simply be {\it gas-rich/gas-poor (e.g. spiral/elliptical) galaxy interactions} which ``activate'' an optically bright unobscured QSO in the gas-poor galaxy, and a starburst in the gas-rich one. We argue that such interactions may have gone largely unnoticed even in the local Universe because the combination of tools necessary to disentagle the progenitors (high resolution and S/N optical {\it and} CO imaging) became available only recently.Comment: 25 pages, 5 figures, accepted for publication by The Astrophysical Journa

    A Resolved Molecular Gas Disk around the Nearby A Star 49 Ceti

    Full text link
    The A star 49 Ceti, at a distance of 61 pc, is unusual in retaining a substantial quantity of molecular gas while exhibiting dust properties similar to those of a debris disk. We present resolved observations of the disk around 49 Ceti from the Submillimeter Array in the J=2-1 rotational transition of CO with a resolution of 1.0x1.2 arcsec. The observed emission reveals an extended rotating structure viewed approximately edge-on and clear of detectable CO emission out to a distance of ~90 AU from the star. No 1.3 millimeter continuum emission is detected at a 3-sigma sensitivity of 2.1 mJy/beam. Models of disk structure and chemistry indicate that the inner disk is devoid of molecular gas, while the outer gas disk between 40 and 200 AU from the star is dominated by photochemistry from stellar and interstellar radiation. We determine parameters for a model that reproduces the basic features of the spatially resolved CO J=2-1 emission, the spectral energy distribution, and the unresolved CO J=3-2 spectrum. We investigate variations in disk chemistry and observable properties for a range of structural parameters. 49 Ceti appears to be a rare example of a system in a late stage of transition between a gas-rich protoplanetary disk and a tenuous, virtually gas-free debris disk.Comment: 11 pages, 6 figures, accepted for publication in Ap
    corecore