6,749 research outputs found
Development of a contra-rotating tidal current turbine and analysis of performance
A contra-rotating marine current turbine has a number of attractive features: nearzero reactive torque on the support structure, near-zero swirl in the wake, and high relative inter-rotor rotational speeds. Modified blade element modelling theory has been used to design and predict the characteristics of such a turbine, and a model turbine and test rig have been constructed. Tests in a towing tank demonstrated the feasibility of the concept. Power coefficients were high for such a small model and in excellent agreement with predictions, confirming the accuracy of the computational modelling procedures. Highfrequency blade loading data were obtained in the course of the experiments. These show the anticipated dynamic components for a contra-rotating machine. Flow visualization of the wake verified the lack of swirl behind the turbine. A larger machine is presently under construction for sea trials
Design and testing of a contra-rotating tidal current turbine
A contra-rotating marine current turbine has a number of attractive features: nearzero reactive torque on the support structure, near-zero swirl in the wake, and high relative inter-rotor rotational speeds. Modified blade element modelling theory has been used to design and predict the characteristics of such a turbine, and a model turbine and test rig have been constructed. Tests in a towing tank demonstrated the feasibility of the concept. Power coefficients were high for such a small model and in excellent agreement with predictions, confirming the accuracy of the computational modelling procedures. High-frequency blade loading data were obtained in the course of the experiments. These show the anticipated dynamic components for a contra-rotating machine. Flow visualization of the wake verified the lack of swirl behind the turbine. A larger machine is presently under construction for sea trials
The origin of organic emission in NGC 2071
Context: The physical origin behind organic emission in embedded low-mass
star formation has been fiercely debated in the last two decades. A multitude
of scenarios have been proposed, from a hot corino to PDRs on cavity walls to
shock excitation.
Aims: The aim of this paper is to determine the location and the
corresponding physical conditions of the gas responsible for organics emission
lines. The outflows around the small protocluster NGC 2071 are an ideal testbed
to differentiate between various scenarios.
Methods: Using Herschel-HIFI and the SMA, observations of CH3OH, H2CO and
CH3CN emission lines over a wide range of excitation energies were obtained.
Comparisons to a grid of radiative transfer models provide constraints on the
physical conditions. Comparison to H2O line shape is able to trace gas-phase
synthesis versus a sputtered origin.
Results: Emission of organics originates in three spots: the continuum
sources IRS 1 ('B') and IRS 3 ('A') as well as a outflow position ('F').
Densities are above 10 cm and temperatures between 100 to 200 K.
CH3OH emission observed with HIFI originates in all three regions and cannot be
associated with a single region. Very little organic emission originates
outside of these regions.
Conclusions: Although the three regions are small (<1,500 AU), gas-phase
organics likely originate from sputtering of ices due to outflow activity. The
derived high densities (>10 cm) are likely a requirement for organic
molecules to survive from being destroyed by shock products. The lack of
spatially extended emission confirms that organic molecules cannot (re)form
through gas-phase synthesis, as opposed to H2O, which shows strong line wing
emission. The lack of CH3CN emission at 'F' is evidence for a different history
of ice processing due to the absence of a protostar at that location and recent
ice mantle evaporation.Comment: 10 Pages, 8 figures, Accepted for Astronomy and Astrophysic
Cyanobacteria blooms cannot be controlled by effective microorganisms (EM) from mud- or Bokashi-balls
In controlled experiments, the ability of ‘‘Effective Microorganisms (EM, in the form of mudballs or Bokashi-balls)’’ was tested for clearing waters from cyanobacteria. We found suspensions of EM-mudballs up to 1 g l-1 to be ineffective in reducing cyanobacterial growth. In all controls and EM-mudball treatments up to 1 g l-1 the cyanobacterial chlorophyll-a (Chl-a) concentrations increased within 4 weeks from&120 to 325–435 lg l-1. When pieces of EM-mudballs (42.5 g) were added to 25-l lake water with cyanobacteria, no decrease of cyanobacteria as compared to untreated controls was observed. In contrast, after 4 weeks cyanobacterial Chl-a concentrations were significantly higher in EM-mudball treatments (52 lg l-1) than in controls (20 lg l-1). Only when suspensions with extremely high EM-mudball concentrations were applied (i.e., 5 and 10 g l-1), exceeding the recommended concentrations by orders of magnitude, cyanobacterial growth was inhibited and a bloom forming concentration was reduced strongly. In these high dosing treatments, the oxygen concentration dropped initially to very low levels of 1.8 g l-1. This was most probably through forcing strong light limitation on the cyanobacteria caused by the high amount of clay and subsequent high turbidity of the water. Hence, this study yields no support for the hypothesis that EM is effective in preventing cyanobacterial proliferation or in terminating blooms. We consider EM products to be ineffective because they neither permanently bind nor remove phosphorus from eutroficated systems, they have no inhibiting effect on cyanobacteria, and they could even be an extra source of nutrients
Colliding Winds in Low-Mass Binary Star Systems: wind interactions and implications for habitable planets
Context. In binary star systems, the winds from the two components impact
each other, leading to strong shocks and regions of enhanced density and
temperature. Potentially habitable circumbinary planets must continually be
exposed to these interactions regions.
Aims. We study, for the first time, the interactions between winds from
low-mass stars in a binary system, to show the wind conditions seen by
potentially habitable circumbinary planets.
Methods. We use the advanced 3D numerical hydrodynamic code Nurgush to model
the wind interactions of two identical winds from two solar mass stars with
circular orbits and a binary separation of 0.5 AU. As input into this model, we
use a 1D hydrodynamic simulation of the solar wind, run using the Versatile
Advection Code. We derive the locations of stable and habitable orbits in this
system to explore what wind conditions potentially habitable planets will be
exposed to during their orbits.
Results. Our wind interaction simulations result in the formation of two
strong shock waves separated by a region of enhanced density and temperature.
The wind-wind interaction region has a spiral shape due to Coriolis forces
generated by the orbital motions of the two stars. The stable and habitable
zone in this system extends from approximately 1.4 AU to 2.4 AU. (TRUNCATED)Comment: 15 pages, 11 figures, to be published in A&
Accelerator performance analysis of the Fermilab Muon Campus
Fermilab is dedicated to hosting world-class experiments in search of new
physics that will operate in the coming years. The Muon g-2 Experiment is one
such experiment that will determine with unprecedented precision the muon
anomalous magnetic moment, which offers an important test of the Standard
Model. We describe in this study the accelerator facility that will deliver a
muon beam to this experiment. We first present the lattice design that allows
for efficient capture, transport, and delivery of polarized muon beams. We then
numerically examine its performance by simulating pion production in the
target, muon collection by the downstream beam line optics, as well as
transport of muon polarization. We finally establish the conditions required
for the safe removal of unwanted secondary particles that minimizes
contamination of the final beam.Comment: 10 p
Molecular Tracers of Embedded Star Formation in Ophiuchus
In this paper we analyze nine SCUBA cores in Ophiuchus using the
second-lowest rotational transitions of four molecular species (12CO, 13CO,
C18O, and C17O) to search for clues to the evolutionary state and
star-formation activity within each core. Specifically, we look for evidence of
outflows, infall, and CO depletion. The line wings in the CO spectra are used
to detect outflows, spectral asymmetries in 13CO are used to determine infall
characteristics, and a comparison of the dust emission (from SCUBA
observations) and gas emission (from C18O) is used to determine the fractional
CO freeze-out.
Through comparison with Spitzer observations of protostellar sources in
Ophiuchus, we discuss the usefulness of CO and its isotopologues as the sole
indicators of the evolutionary state of each core. This study is an important
pilot project for the JCMT Legacy Survey of the Gould Belt (GBS) and the
Galactic Plane (JPS), which intend to complement the SCUBA-2 dust continuum
observations with HARP observations of 12CO, 13CO, C18O, and C17O J = 3 - 2 in
order to determine whether or not the cold dust clumps detected by SCUBA-2 are
protostellar or starless objects.
Our classification of the evolutionary state of the cores (based on molecular
line maps and SCUBA observations) is in agreement with the Spitzer designation
for six or seven of the nine SCUBA cores. However, several important caveats
exist in the interpretation of these results, many of which large mapping
surveys like the GBS may be able to overcome to provide a clearer picture of
activity in crowded fields.Comment: 43 pages including 19 postscript figures. Accepted for publication in
the PAS
Loss of expression of ATM is associated with worse prognosis in colorectal cancer and loss of Ku70 expression is associated with CIN
Repair of double strand DNA breaks (DSBs) is pivotal in maintaining normal
cell division and disruption of this system has been shown to be a key factor in
carcinogenesis. Loss of expression of the DSB repair proteins have previously been
shown to be associated with poorer survival in colorectal cancer. We wished to
ascertain the relationship of altered expression of the DSB repair proteins γ-H2AX
(gamma-H2AX), ATM and Ku70 with biological and clinico-pathological features
of colorectal cancer. 908 tumours from the VICTOR clinical trial of stage II/III
colorectal cancer were analysed for expression of γ-H2AX, ATM and Ku70 using
immunohistochemistry. Expression levels were correlated with CIN and with diseasefree
survival, correcting for microsatellite instability, BRAF/KRAS mutation status,
Dukes stage, chemo/radiotherapy, age, gender and tumour location. Down-regulated
Ku70 expression was associated with chromosomal instability (p=0.029) in colorectal
cancer. Reduced ATM expression was an independent marker of poor disease-free
survival (HR=1.67, 95% CI 1.11-2.50, p=0.015). For Ku70, further studies are
required to investigate the potential relationship of non-homologous end joining with
chromosomal instability. Loss of ATM expression might serve as a biomarker of poor
prognosis in colorectal cancer
- …