14,001 research outputs found

    Strapdown calibration and alignment study. Volume 2 - Procedural and parametric trade-off analyses document Final report

    Get PDF
    Parametric and procedural tradeoffs for alignment and calibration of inertial sensing uni

    Strapdown calibration and alignment study. Volume 2 - Procedural and parametric trade- off analyses document

    Get PDF
    Techniques for laboratory calibration and alignment of strapdown inertial sensing unit - procedural and parametric trade-off analyse

    Solcore: A multi-scale, python-based library for modelling solar cells and semiconductor materials

    Full text link
    Computational models can provide significant insight into the operation mechanisms and deficiencies of photovoltaic solar cells. Solcore is a modular set of computational tools, written in Python 3, for the design and simulation of photovoltaic solar cells. Calculations can be performed on ideal, thermodynamic limiting behaviour, through to fitting experimentally accessible parameters such as dark and light IV curves and luminescence. Uniquely, it combines a complete semiconductor solver capable of modelling the optical and electrical properties of a wide range of solar cells, from quantum well devices to multi-junction solar cells. The model is a multi-scale simulation accounting for nanoscale phenomena such as the quantum confinement effects of semiconductor nanostructures, to micron level propagation of light through to the overall performance of solar arrays, including the modelling of the spectral irradiance based on atmospheric conditions. In this article we summarize the capabilities in addition to providing the physical insight and mathematical formulation behind the software with the purpose of serving as both a research and teaching tool.Comment: 25 pages, 18 figures, Journal of Computational Electronics (2018

    Detailed Structure and Dynamics in Particle-in-Cell Simulations of the Lunar Wake

    Get PDF
    The solar wind plasma from the Sun interacts with the Moon, generating a wake structure behind it, since the Moon is to a good approximation an insulator, has no intrinsic magnetic field and a very thin atmosphere. The lunar wake in simplified geometry has been simulated via a 1-1/2-D electromagnetic particle-in-cell code, with high resolution in order to resolve the full phase space dynamics of both electrons and ions. The simulation begins immediately downstream of the moon, before the solar wind has infilled the wake region, then evolves in the solar wind rest frame. An ambipolar electric field and a potential well are generated by the electrons, which subsequently create a counter-streaming beam distribution, causing a two-stream instability which confines the electrons. This also creates a number of electron phase space holes. Ion beams are accelerated into the wake by the ambipolar electric field, generating a two stream distribution with phase space mixing that is strongly influenced by the potentials created by the electron two-stream instability. The simulations compare favourably with WIND observations.Comment: 10 pages, 13 figures, to be published in Physics of Plasma

    Buneman instability in a magnetized current-carrying plasma with velocity shear

    Full text link
    Buneman instability is often driven in magnetic reconnection. Understanding how velocity shear in the beams driving the Buneman instability affects the growth and saturation of waves is relevant to turbulence, heating, and diffusion in magnetic reconnection. Using a Mathieu-equation analysis for weak cosine velocity shear together with Vlasov simulations, the effects of shear on the kinetic Buneman instability are studied in a plasma consisting of strongly magnetized electrons and cold unmagnetized ions. In the linearly unstable phase, shear enhances the coupling between oblique waves and the sheared electron beam, resulting in a wider range of unstable eigenmodes with common lower growth rates. The wave couplings generate new features of the electric fields in space, which can persist into the nonlinear phase when electron holes form. Lower hybrid instabilities simultaneously occur at k/kme/mik_{\shortparallel}/k_{\perp} \sim \sqrt{m_e/m_i} with a much lower growth rate, and are not affected by the velocity shear.Comment: Accepted by Physics of Plasm

    Strapdown calibration and alignment study. Volume 1 - Development document Final report

    Get PDF
    Calibration and alignment techniques for inertial sensing uni

    Pattern formation in self-propelled particles with density-dependent motility

    Full text link
    We study the behaviour of interacting self-propelled particles, whose self-propulsion speed decreases with their local density. By combining direct simulations of the microscopic model with an analysis of the hydrodynamic equations obtained by explicitly coarse graining the model, we show that interactions lead generically to the formation of a host of patterns, including moving clumps, active lanes and asters. This general mechanism could explain many of the patterns seen in recent experiments and simulations

    A randomised controlled study of high intensity exercise as a dishabituating stimulus to improve hypoglycaemia awareness in people with type 1 diabetes:a proof of concept study

    Get PDF
    Aims/hypothesis Approximately 25% of people with type 1 diabetes have suppressed counterregulatory hormonal and symptomatic responses to insulin-induced hypoglycaemia, which renders them at increased risk of severe, disabling hypoglycaemia. This is called impaired awareness of hypoglycaemia (IAH), the cause of which is unknown. We recently proposed that IAH develops through habituation, a form of adaptive memory to preceding hypoglycaemia. Consistent with this hypothesis, we demonstrated restoration of defective counterregulatory hormonal responses to hypoglycaemia (referred to as dishabituation) in a rodent model of IAH following introduction of a novel stress stimulus (high intensity training [HIT]). In this proof-of-concept study we sought to further test this hypothesis by examining whether a single episode of HIT would amplify counterregulatory responses to subsequent hypoglycaemia in people with type 1 diabetes who had IAH (assessed by Gold score ≥4, modified Clarke score ≥4 or Dose Adjustment For Normal Eating (DAFNE) hypoglycaemia awareness rating 2 or 3). The primary outcome was the difference in adrenaline response to hypoglycaemia following both a single episode of HIT and rest. Methods In this randomised, crossover study 12 participants aged between 18 and 55 years with type 1 diabetes for ≥5 years and an HbA1c < 75 mmol/mol (9%) were recruited. Individuals were randomised using computer generated block randomisation to start with one episode of HIT (4 × 30 s cycle sprints [2 min recovery] at 150% of maximum wattage achieved during V˙O2peak assessment) or rest (control). The following day they underwent a 90 min hyperinsulinaemic–hypoglycaemic clamp study at 2.5 mmol/l with measurement of hormonal counterregulatory response, symptom scores and cognitive testing (four-choice reaction time and digit symbol substitution test). Each intervention and subsequent clamp study was separated by at least 2 weeks. The participants and investigators were not blinded to the intervention or measurements during the study. The investigators were blinded to the primary outcome and blood analysis results. Results All participants (six male and six female, age 19–54 years, median [IQR] duration of type 1 diabetes 24.5 [17.3–29.0] years, mean [SEM] HbA1c 56 [3.67] mmol/mol; 7.3% [0.34%]) completed the study (both interventions and two clamps). In comparison with the rest study, a single episode of HIT led to a 29% increase in the adrenaline (epinephrine) response (mean [SEM]) (2286.5 [343.1] vs 2953.8 [384.9] pmol/l); a significant increase in total symptom scores (Edinburgh Hypoglycaemia Symptom Scale: 24.25 [2.960 vs 27.5 [3.9]; p < 0.05), and a significant prolongation of four-choice reaction time (591.8 [22.5] vs 659.9 [39.86] ms; p < 0.01] during equivalent hypoglycaemia induced the following day. Conclusions/interpretation These findings are consistent with the hypothesis that IAH develops in people with type 1 diabetes as a habituated response and that introduction of a novel stressor can restore, at least partially, the adapted counterregulatory hormonal, symptomatic and cognitive responses to hypoglycaemia.Output Status: Forthcoming/Available Onlin
    corecore