The solar wind plasma from the Sun interacts with the Moon, generating a wake
structure behind it, since the Moon is to a good approximation an insulator,
has no intrinsic magnetic field and a very thin atmosphere. The lunar wake in
simplified geometry has been simulated via a 1-1/2-D electromagnetic
particle-in-cell code, with high resolution in order to resolve the full phase
space dynamics of both electrons and ions. The simulation begins immediately
downstream of the moon, before the solar wind has infilled the wake region,
then evolves in the solar wind rest frame. An ambipolar electric field and a
potential well are generated by the electrons, which subsequently create a
counter-streaming beam distribution, causing a two-stream instability which
confines the electrons. This also creates a number of electron phase space
holes. Ion beams are accelerated into the wake by the ambipolar electric field,
generating a two stream distribution with phase space mixing that is strongly
influenced by the potentials created by the electron two-stream instability.
The simulations compare favourably with WIND observations.Comment: 10 pages, 13 figures, to be published in Physics of Plasma