66,641 research outputs found

    On multipartite invariant states I. Unitary symmetry

    Get PDF
    We propose a natural generalization of bipartite Werner and isotropic states to multipartite systems consisting of an arbitrary even number of d-dimensional subsystems (qudits). These generalized states are invariant under the action of local unitary operations. We study basic properties of multipartite invariant states: separability criteria and multi-PPT conditions.Comment: 9 pages; slight correction

    Necessary and sufficient conditions for bipartite entanglement

    Full text link
    Necessary and sufficient conditions for bipartite entanglement are derived, which apply to arbitrary Hilbert spaces. Motivated by the concept of witnesses, optimized entanglement inequalities are formulated solely in terms of arbitrary Hermitian operators, which makes them useful for applications in experiments. The needed optimization procedure is based on a separability eigenvalue problem, whose analytical solutions are derived for a special class of projection operators. For general Hermitian operators, a numerical implementation of entanglement tests is proposed. It is also shown how to identify bound entangled states with positive partial transposition.Comment: 7 pages, 2 figur

    The effect of supersymmetric CP phases on Chargino-Pair Production via Drell-Yan Process at the LHC

    Full text link
    We compute the rates for pp annihilation into chargino-pairs via Drell-Yan process taking into account the effects of supersymmetric soft phases, at proton-proton collider. In particular, the phase of the mu parameter gains direct accessibility via the production of dissimilar charginos. The phases of the trilinear soft masses do not have a significant effect on the cross sections.Comment: 24 pages, 7 figure

    A QCD Axion from Higher Dimensional Gauge Field

    Full text link
    We point out that a QCD axion solving the strong CP problem can arise naturally from parity-odd gauge field C_M in 5-dimensional (5D) orbifold field theory. The required axion coupling to the QCD anomaly comes from the 5D Chern-Simons coupling, and all other unwanted U(1)_{PQ} breaking axion couplings can be avoided naturally by the 5D gauge symmetry of C_M and the 5D locality. If the fifth dimension is warped, the resulting axion scale is suppressed by small warp factor compared to the Planck scale, thereby the model can generate naturally an intermediate axion scale f_a=10^{10} - 10^{12}GeV.Comment: 5 pages, Revtex

    Charge Frustration Effects in Capacitively Coupled Two-Dimensional Josephson-Junction Arrays

    Full text link
    We investigate the quantum phase transitions in two capacitively coupled two-dimensional Josephson-junction arrays with charge frustration. The system is mapped onto the S=1 and S=1/2S=1/2 anisotropic Heisenberg antiferromagnets near the particle-hole symmetry line and near the maximal-frustration line, respectively, which are in turn argued to be effectively described by a single quantum phase model. Based on the resulting model, it is suggested that near the maximal frustration line the system may undergo a quantum phase transition from the charge-density wave to the super-solid phase, which displays both diagonal and off- diagonal long-range order.Comment: 6 pages, 6 figures, to appear in Phys. Rev.

    The Constraints on CP Violating Phases in models with a dynamical gluino phase

    Full text link
    We have analyzed the electric dipole moment and the Higgs mass constraints on the supersymmetric model which offers dynamical solutions to the \mu and strong CP problems. The trilinear coupling phases, and \tan\beta-|\mu| are strongly correlated, particularly in the low-\tan\beta regime. Certain values of the phases of the trilinear couplings are forbidden, whereas the CP violating phase from the chargino sector is imprisoned to lie near a CP conserving point, by the Higgs mass and electric dipole moment constraints.Comment: 19 pages, 11 eps fig

    Extremal extensions of entanglement witnesses: Unearthing new bound entangled states

    Full text link
    In this paper, we discuss extremal extensions of entanglement witnesses based on Choi's map. The constructions are based on a generalization of the Choi map due to Osaka, from which we construct entanglement witnesses. These extremal extensions are powerful in terms of their capacity to detect entanglement of positive under partial transpose (PPT) entangled states and lead to unearthing of entanglement of new PPT states. We also use the Cholesky-like decomposition to construct entangled states which are revealed by these extremal entanglement witnesses.Comment: 8 pages 6 figures revtex4-

    Constrained bounds on measures of entanglement

    Full text link
    Entanglement measures constructed from two positive, but not completely positive maps on density operators are used as constraints in placing bounds on the entanglement of formation, the tangle, and the concurrence of 4 x N mixed states. The maps are the partial transpose map and the Φ\Phi-map introduced by Breuer [H.-P. Breuer, Phys. Rev. Lett. 97, 080501 (2006)]. The norm-based entanglement measures constructed from these two maps, called negativity and Φ\Phi-negativity, respectively, lead to two sets of bounds on the entanglement of formation, the tangle, and the concurrence. We compare these bounds and identify the sets of 4 x N density operators for which the bounds from one constraint are better than the bounds from the other. In the process, we present a new derivation of the already known bound on the concurrence based on the negativity. We compute new bounds on the three measures of entanglement using both the constraints simultaneously. We demonstrate how such doubly constrained bounds can be constructed. We discuss extensions of our results to bipartite states of higher dimensions and with more than two constraints.Comment: 28 pages, 12 figures. v2 simplified and generalized derivation of main results; errors correcte

    Intersecting Brane World from Type I Compactification

    Get PDF
    We elaborate that general intersecting brane models on orbifolds are obtained from type I string compactifications and their T-duals. Symmetry breaking and restoration occur via recombination and parallel separation of branes, preserving supersymmetry. The Ramond-Ramond tadpole cancelation and the toron quantization constrain the spectrum as a branching of the adjoints of SO(32), up to orbifold projections. Since the recombination changes the gauge coupling, the single gauge coupling of type I could give rise to different coupling below the unification scale. This is due to the nonlocal properties of the Dirac-Born-Infeld action. The weak mixing angle sin^2 theta_W = 3/8 is naturally explained by embedding the quantum numbers to those of SO(10).Comment: 31 pages, 5 figure

    Probing MSSM Higgs Sector with Explicit CP Violation at a Photon Linear Collider

    Get PDF
    The CP properties of Higgs bosons can be probed through their s-channel resonance productions via photon-photon collisions by use of circularly and/or linearly polarized backscattered laser photons at a TeV-scale linear e^+ e^- collider. Exploiting this powerful tool, we investigate in detail the Higgs sector of the minimal supersymmetric Standard Model with explicit CP violation.Comment: 18 pages, 5 figures. Some comments added and typos corrected. To appear in Phys. Rev.
    • …
    corecore