Necessary and sufficient conditions for bipartite entanglement are derived,
which apply to arbitrary Hilbert spaces. Motivated by the concept of witnesses,
optimized entanglement inequalities are formulated solely in terms of arbitrary
Hermitian operators, which makes them useful for applications in experiments.
The needed optimization procedure is based on a separability eigenvalue
problem, whose analytical solutions are derived for a special class of
projection operators. For general Hermitian operators, a numerical
implementation of entanglement tests is proposed. It is also shown how to
identify bound entangled states with positive partial transposition.Comment: 7 pages, 2 figur