56 research outputs found

    Diversity and selective sweep in the OsAMT1;1 genomic region of rice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ammonium is one of the major forms in which nitrogen is available for plant growth. <it>OsAMT1;1 </it>is a high-affinity ammonium transporter in rice (<it>Oryza sativa </it>L.), responsible for ammonium uptake at low nitrogen concentration. The expression pattern of the gene has been reported. However, variations in its nucleotides and the evolutionary pathway of its descent from wild progenitors are yet to be elucidated. In this study, nucleotide diversity of the gene <it>OsAMT1;1 </it>and the diversity pattern of seven gene fragments spanning a genomic region approximately 150 kb long surrounding the gene were surveyed by sequencing a panel of 216 rice accessions including both cultivated rice and wild relatives.</p> <p>Results</p> <p>Nucleotide polymorphism (Pi) of <it>OsAMT1;1 </it>was as low as 0.00004 in cultivated rice (<it>Oryza sativa</it>), only 2.3% of that in the common wild rice (<it>O. rufipogon</it>). A single dominant haplotype was fixed at the locus in <it>O. sativa</it>. The test values for neutrality were significantly negative in the entire region stretching 5' upstream and 3' downstream of the gene in all accessions. The value of linkage disequilibrium remained high across a 100 kb genomic region around <it>OsAMT1;1 </it>in <it>O. sativa</it>, but fell rapidly in <it>O. rufipogon </it>on either side of the promoter of <it>OsAMT1;1</it>, demonstrating a strong natural selection within or nearby the ammonium transporter.</p> <p>Conclusions</p> <p>The severe reduction in nucleotide variation at <it>OsAMT1;1 </it>in rice was caused by a selective sweep around <it>OsAMT1;1</it>, which may reflect the nitrogen uptake system under strong selection by the paddy soil during the domestication of rice. Purifying selection also occurred before the wild rice diverged into its two subspecies, namely <it>indica </it>and <it>japonica</it>. These findings would provide useful insights into the processes of evolution and domestication of nitrogen uptake genes in rice.</p

    Algal MIPs, high diversity and conserved motifs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Major intrinsic proteins (MIPs) also named aquaporins form channels facilitating the passive transport of water and other small polar molecules across membranes. MIPs are particularly abundant and diverse in terrestrial plants but little is known about their evolutionary history. In an attempt to investigate the origin of the plant MIP subfamilies, genomes of chlorophyte algae, the sister group of charophyte algae and land plants, were searched for MIP encoding genes.</p> <p>Results</p> <p>A total of 22 MIPs were identified in the nine analysed genomes and phylogenetic analyses classified them into seven subfamilies. Two of these, Plasma membrane Intrinsic Proteins (PIPs) and GlpF-like Intrinsic Proteins (GIPs), are also present in land plants and divergence dating support a common origin of these algal and land plant MIPs, predating the evolution of terrestrial plants. The subfamilies unique to algae were named MIPA to MIPE to facilitate the use of a common nomenclature for plant MIPs reflecting phylogenetically stable groups. All of the investigated genomes contained at least one <it>MIP </it>gene but only a few species encoded MIPs belonging to more than one subfamily.</p> <p>Conclusions</p> <p>Our results suggest that at least two of the seven subfamilies found in land plants were present already in an algal ancestor. The total variation of MIPs and the number of different subfamilies in chlorophyte algae is likely to be even higher than that found in land plants. Our analyses indicate that genetic exchanges between several of the algal subfamilies have occurred. The PIP1 and PIP2 groups and the Ca<sup>2+ </sup>gating appear to be specific to land plants whereas the pH gating is a more ancient characteristic shared by all PIPs. Further studies are needed to discern the function of the algal specific subfamilies MIPA-E and to fully understand the evolutionary relationship of algal and terrestrial plant MIPs.</p

    Secondary Metabolites of Marine Microbes: From Natural Products Chemistry to Chemical Ecology

    Get PDF
    Marine natural products (MNPs) exhibit a wide range of pharmaceutically relevant bioactivities, including antibiotic, antiviral, anticancer, or anti-inflammatory properties. Besides marine macroorganisms such as sponges, algae, or corals, specifically marine bacteria and fungi have shown to produce novel secondary metabolites (SMs) with unique and diverse chemical structures that may hold the key for the development of novel drugs or drug leads. Apart from highlighting their potential benefit to humankind, this review is focusing on the manifold functions of SMs in the marine ecosystem. For example, potent MNPs have the ability to exile predators and competing organisms, act as attractants for mating purposes, or serve as dye for the expulsion or attraction of other organisms. A large compilation of literature on the role of MNPs in marine ecology is available, and several reviews evaluated the function of MNPs for the aforementioned topics. Therefore, we focused the second part of this review on the importance of bioactive compounds from crustose coralline algae (CCA) and their role during coral settlement, a topic that has received less attention. It has been shown that certain SMs derived from CCA and their associated bacteria are able to induce attachment and/or metamorphosis of many benthic invertebrate larvae, including globally threatened reef-building scleractinian corals. This review provides an overview on bioactivities of MNPs from marine microbes and their potential use in medicine as well as on the latest findings of the chemical ecology and settlement process of scleractinian corals and other invertebrate larvae

    Biochemical characterization of Arabidopsis APYRASE family reveals their roles in regulating endomembrane NDP/NMP homoeostasis

    Get PDF
    Plant apyrases are nucleoside triphosphate (NTP) diphosphohydrolases (NTPDases) and have been implicated in an array of functions within the plant including the regulation of extracellular ATP. Arabidopsis encodes a family of seven membrane bound apyrases (AtAPY1-7) that comprise three distinct clades, all of which contain the five conserved apyrase domains. With the exception of AtAPY1 and AtAPY2, the biochemical and the sub-cellular characterization of the other members are currently unavailable. In this research, we have shown all seven Arabidopsis apyrases localize to internal membranes comprising the cis-Golgi, endoplasmic reticulum (ER) and endosome, indicating an endo-apyrase classification for the entire family. In addition, all members, with the exception of AtAPY7, can function as endo-apyrases by complementing a yeast double mutant (Δynd1Δgda1) which lacks apyrase activity. Interestingly, complementation of the mutant yeast using well characterized human apyrases could only be accomplished by using a functional ER endo-apyrase (NTPDase6), but not the ecto-apyrase (NTPDase1). Furthermore, the substrate specificity analysis for the Arabidopsis apyrases AtAPY1-6 indicated that each member has a distinct set of preferred substrates covering various NDPs (nucleoside diphosphates) and NTPs. Combining the biochemical analysis and sub-cellular localization of the Arabidopsis apyrases family, the data suggest their possible roles in regulating endomembrane NDP/NMP (nucleoside monophosphate) homoeostasis

    Single-particle analysis reveals shutoff control of the Arabidopsis ammonium transporter AMT1;3 by clustering and internalization

    No full text
    Ammonium is a preferred source of nitrogen for plants but is toxic at high levels. Plant ammonium transporters (AMTs) play an essential role in NH(4)(+) uptake, but the mechanism by which AMTs are regulated remains unclear. To study how AMTs are regulated in the presence of ammonium, we used variable-angle total internal reflection fluorescence microscopy and fluorescence cross-correlation spectroscopy for single-particle fluorescence imaging of EGFP-tagged AMT1;3 on the plasma membrane of Arabidopsis root cells at various ammonium levels. We demonstrated that AMT1;3-EGFP dynamically appeared and disappeared on the plasma membrane as moving fluorescent spots in low oligomeric states under N-deprived and N-sufficient conditions. Under external high-ammonium stress, however, AMT1;3-EGFPs were found to amass into clusters, which were then internalized into the cytoplasm. A similar phenomenon also occurred in the glutamine synthetase mutant gln1;2 background. Single-particle analysis of AMT1;3-EGFPs in the clathrin heavy chain 2 mutant (chc2 mutant) and Flotllin1 artificial microRNA (Flot1 amiRNA) backgrounds, together with chemical inhibitor treatments, demonstrated that the endocytosis of AMT1;3 clusters induced by high-ammonium stress could occur mainly through clathrin-mediated endocytic pathways, but the contribution of microdomain-associated endocytic pathway cannot be excluded in the internalization. Our results revealed that the clustering and endocytosis of AMT1;3 provides an effective mechanism by which plant cells can avoid accumulation of toxic levels of ammonium by eliminating active AMT1;3 from the plasma membrane
    corecore