5,453 research outputs found

    Evaluating anemometer drift: A statistical approach to correct biases in wind speed measurement

    Get PDF
    Recent studies on observed wind variability have revealed a decline (termed “stilling”) of near-surface wind speed during the last 30–50 years over many mid-latitude terrestrial regions, particularly in the Northern Hemisphere. The well-known impact of cup anemometer drift (i.e., wear on the bearings) on the observed weakening of wind speed has been mentioned as a potential contributor to the declining trend. However, to date, no research has quantified its contribution to stilling based on measurements, which is most likely due to lack of quantification of the ageing effect. In this study, a 3-year field experiment (2014–2016) with 10-minute paired wind speed measurements from one new and one malfunctioned (i.e., old bearings) SEAC SV5 cup anemometer which has been used by the Spanish Meteorological Agency in automatic weather stations since mid-1980s, was developed for assessing for the first time the role of anemometer drift on wind speed measurement. The results showed a statistical significant impact of anemometer drift on wind speed measurements, with the old anemometer measuring lower wind speeds than the new one. Biases show a marked temporal pattern and clear dependency on wind speed, with both weak and strong winds causing significant biases. This pioneering quantification of biases has allowed us to define two regression models that correct up to 37% of the artificial bias in wind speed due to measurement with an old anemometer

    The membrane depolarization and increase intracellular calcium level produced by silver nanoclusters are responsible for bacterial death

    Get PDF
    This work highlights how our silver ultra nanoclusters (ARGIRIUM-SUNc) hand-made synthesized, are very useful as a bactericide and anti-biofilm agent. The Argirium-SUNc effective antibacterial concentrations are very low (< 1 ppm) as compared to the corresponding values reported in the literature. Different bacterial defense mechanisms are observed dependent on ARGIRIUM-SUNc concentrations. Biochemical investigations (volatilome) have been performed to understand the pathways involved in cell death. By using fluorescence techniques and cell viability measurements we show, for the first time, that membrane depolarization and calcium intracellular level are both primary events in bacteria death. The ARGIRIUM-SUNc determined eradication of different biofilm at a concentration as low as 0.6 ppm. This suggests that the effect of the nanoparticles follows a common mechanism in different bacteria. It is highly probable that the chemical constitution of the crosslinks could be a key target in the disrupting mechanism of our nanoparticles. Since the biofilms and their constituents are essential for bacterial survival in contact with humans, the silver nanoparticles represent a logical target for new antibacterial treatments

    The Arabidopsis mutant, fy-1, has an ABA-insensitive germination phenotype

    Get PDF
    Arabidopsis FY, a homologue of the yeast RNA 3' processing factor Pfs2p, regulates the autonomous floral transition pathway through its interaction with FCA, an RNA binding protein. It is demonstrated here that FY also influences seed dormancy. Freshly-harvested seed of the Arabidopsis fy-1 mutant germinated readily in the absence of stratification or after-ripening. Furthermore, the fy-1 mutant showed less ABA sensitivity compared with the wild type, Ler, under identical conditions. Freshly-harvested seed of fy-1 had significantly higher ABA levels than Ler, even though Ler was dormant and fy-1 germinated readily. The PPLPP domains of FY, which are required for flowering control, were not essential for the ABA-influenced repression of germination. FLC expression analysis in seeds of different genotypes suggested that the effect of FY on dormancy may not be elicited through FLC. No significant differences in CYP707A1, CYP707A2, NCED9, ABI3, and ABI4 were observed between freshly-harvested Ler and fy-1 imbibed for 48 h. GA3ox1 and GA3ox2 rapidly increased over the 48 h imbibition period for fy-1, with no significant increases in these transcripts for Ler. ABI5 levels were significantly lower in fy-1 over the 48 h imbibition period. The results suggest that FY is involved in the development of dormancy and ABA sensitivity in Arabidopsis seed

    Colombian essential oil of ruta graveolens against nosocomial antifungal resistant candida strains

    Get PDF
    Drug resistance in antifungal therapy, a problem unknown until a few years ago, is increasingly assuming importance especially in immunosuppressed patients and patients receiving chemotherapy and radiotherapy. In the past years, the use of essential oils as an approach to improve the effectiveness of antifungal agents and to reduce antifungal resistance levels has been proposed. Our research aimed to evaluate the antifungal activity of Colombian rue, Ruta graveolens, essential oil (REO) against clinical strains of Candida albicans, Candida parapsilopsis, Candida glabrata, and Candida tropicalis. Data obtained showed that C. tropicalis and C. albicans were the most sensitive strains showing minimum inhibitory concentrations (MIC) of 4.1 and 8.2 µg/mL of REO. Time–kill kinetics assay demonstrated that REO showed a fungicidal effect against C. tropicalis and a fungistatic effect against C. albicans. In addition, an amount of 40% of the biofilm formed by C. albicans was eradicated using 8.2 µg/mL of REO after 1 h of exposure. The synergistic effect of REO together with some antifungal compounds was also investigated. Fractional inhibitory concentration index (FICI) showed synergic effects of REO combined with amphotericin B. REO Lead a disruption in the cellular membrane integrity, consequently resulting in increased intracellular leakage of the macromolecules, thus confirming that the plasma membrane is a target of the mode of action of REO against C. albicans and C. tropicalis

    Ribavirin as a First Treatment Approach for Hepatitis E Virus Infection in Transplant Recipient Patients

    Get PDF
    The hepatitis E virus (HEV) is the major cause of acute hepatitis of viral origin worldwide. Despite its usual course as an asymptomatic self-limited hepatitis, there are highly susceptible populations, such as those with underlying immunosuppression, which could develop chronic hepatitis. In this situation, implementation of therapy is mandatory in the sense to facilitate viral clearance. Currently, there are no specific drugs approved for HEV infection, but ribavirin (RBV), the drug of choice, is used for off-label treatment. Here, we present two cases of chronic HEV infection in transplant patients, reviewing and discussing the therapeutic approach available in the literature. The use of RBV for the treatment of an HEV infection in organ transplant patients seems to be effective. The recommendation of 12 weeks of therapy is adequate in terms of efficacy. Nevertheless, there are important issues that urgently need to be assessed, such as optimal duration of therapy and drug dosage

    Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI

    Get PDF
    In the last few years, Artificial Intelligence (AI) has achieved a notable momentum that, if harnessed appropriately, may deliver the best of expectations over many application sectors across the field. For this to occur shortly in Machine Learning, the entire community stands in front of the barrier of explainability, an inherent problem of the latest techniques brought by sub-symbolism (e.g. ensembles or Deep Neural Networks) that were not present in the last hype of AI (namely, expert systems and rule based models). Paradigms underlying this problem fall within the so-called eXplainable AI (XAI) field, which is widely acknowledged as a crucial feature for the practical deployment of AI models. The overview presented in this article examines the existing literature and contributions already done in the field of XAI, including a prospect toward what is yet to be reached. For this purpose we summarize previous efforts made to define explainability in Machine Learning, establishing a novel definition of explainable Machine Learning that covers such prior conceptual propositions with a major focus on the audience for which the explainability is sought. Departing from this definition, we propose and discuss about a taxonomy of recent contributions related to the explainability of different Machine Learning models, including those aimed at explaining Deep Learning methods for which a second dedicated taxonomy is built and examined in detail. This critical literature analysis serves as the motivating background for a series of challenges faced by XAI, such as the interesting crossroads of data fusion and explainability. Our prospects lead toward the concept of Responsible Artificial Intelligence, namely, a methodology for the large-scale implementation of AI methods in real organizations with fairness, model explainability and accountability at its core. Our ultimate goal is to provide newcomers to the field of XAI with a thorough taxonomy that can serve as reference material in order to stimulate future research advances, but also to encourage experts and professionals from other disciplines to embrace the benefits of AI in their activity sectors, without any prior bias for its lack of interpretability

    Protocol of sterile personal protective equipment for surgical personnel against SARS-CoV-2 during the COVID-19 pandemic

    Get PDF
    Background: COVID-19 represents the major pandemic seen the last years generating morbidity and mortality around the world. It is well known the propagation of the virus occurs by air mostly, so it is needed a barrier when the medic personal is treating suspect or confirm patients. Personal protective equipment represents a barrier between the health personnel and the patient during the COVID-19 pandemic. The surgical team during a COVID-19 confirmed o suspicious case procedure requires using PPE to be protected and keep the sterility for the patient safety.Methods: A team of surgeons from a 100% COVID-19 hospital of the Mexican institute of social security developed an inner protocol of safe use PPE maintaining sterility for the surgery.Conclusions: The protocol described provides safety to surgical team and the patient minimizing risk of surgical infections

    ICE1 and ZOU determine the depth of primary seed dormancy in Arabidopsis independently of their role in endosperm development

    Get PDF
    Seed dormancy is a widespread and key adaptive trait that is essential for the establishment of soil seed banks and prevention of preharvest sprouting. Herein we demonstrate that the endosperm-expressed transcription factors ZHOUPI (ZOU) and INDUCER OF CBF EXPRESSION1 (ICE1) play a role in determining primary dormancy depth in Arabidopsis. We show that ice1 or zou increases seed dormancy and the double mutant has an additive phenotype. The increased dormancy is associated with increased ABA levels, and can be separated genetically from their role in endosperm maturation, because loss of ABA biosynthesis or DELAY OF GERMINATION 1 reverses the dormancy phenotype without affecting the aberrant seed morphology. Consistent with these results, ice1 endosperms had an increased capacity for preventing embryo greening, a phenotype previously associated with an increase in endospermic ABA levels. Although ice1 changes the expression of many genes including some in ABA biosynthesis, catabolism and/or signalling, only ABA INSENSITIVE 3 is significantly misregulated in ice1 mutants. We also demonstrate that ICE1 binds to and inhibits expression of the ABA INSENSITIVE 3. Our data demonstrate that Arabidopsis ICE1 and ZOU determine the depth of primary dormancy during maturation independently of their effect on endosperm development

    Targeted online liquid chromatography electron capture dissociation mass spectrometry for the localization of sites of in vivo phosphorylation in human Sprouty2

    Get PDF
    We demonstrate a strategy employing collision-induced dissociation for phosphopeptide discovery, followed by targeted electron capture dissociation (ECD) for site localization. The high mass accuracy and low background noise of the ECD mass spectra allow facile sequencing of coeluting isobaric phosphopeptides, with up to two isobaric phosphopeptides sequenced from a single mass spectrum. In contrast to the previously described neutral loss of dependent ECD method, targeted ECD allows analysis of both phosphotyrosine peptides and lower abundance phosphopeptides. The approach was applied to phosphorylation analysis of human Sprouty2, a regulator of receptor tyrosine kinase signaling. Fifteen sites of phosphorylation were identified, 11 of which are novel
    corecore