271 research outputs found

    Planar photonic crystal

    Get PDF
    We present results of guiding light in a single-line-defect planar photonic crystal (PPC) waveguide with 90° and 60° bends. The wave guiding is obtained by total internal reflection perpendicular to the plane of propagation and by the photonic band gap for the 2D photonic crystal in the plane. The results for photonic waveguiding are shown and demonstrated at 1.5 µm wavelength

    Single Color Centers Implanted in Diamond Nanostructures

    Get PDF
    The development of materials processing techniques for optical diamond nanostructures containing a single color center is an important problem in quantum science and technology. In this work, we present the combination of ion implantation and top-down diamond nanofabrication in two scenarios: diamond nanopillars and diamond nanowires. The first device consists of a 'shallow' implant (~20nm) to generate Nitrogen-vacancy (NV) color centers near the top surface of the diamond crystal. Individual NV centers are then isolated mechanically by dry etching a regular array of nanopillars in the diamond surface. Photon anti-bunching measurements indicate that a high yield (>10%) of the devices contain a single NV center. The second device demonstrates 'deep' (~1\mu m) implantation of individual NV centers into pre-fabricated diamond nanowire. The high single photon flux of the nanowire geometry, combined with the low background fluorescence of the ultrapure diamond, allows us to sustain strong photon anti-bunching even at high pump powers.Comment: 20 pages, 7 figure

    Integrated TiO2 resonators for visible photonics

    Full text link
    We demonstrate waveguide-coupled titanium dioxide (TiO2) racetrack resonators with loaded quality factors of 2x10^4 for the visible wavelengths. The structures were fabricated in sputtered TiO2 thin films on oxidized silicon substrates using standard top-down nanofabrication techniques, and passively probed in transmission measurements using a tunable red laser. Devices based on this material could serve as integrated optical elements as well as passive platforms for coupling to visible quantum emitters.Comment: 4 pages, 3 figure

    Liquid-infiltrated photonic crystals - enhanced light-matter interactions for lab-on-a-chip applications

    Full text link
    Optical techniques are finding widespread use in analytical chemistry for chemical and bio-chemical analysis. During the past decade, there has been an increasing emphasis on miniaturization of chemical analysis systems and naturally this has stimulated a large effort in integrating microfluidics and optics in lab-on-a-chip microsystems. This development is partly defining the emerging field of optofluidics. Scaling analysis and experiments have demonstrated the advantage of micro-scale devices over their macroscopic counterparts for a number of chemical applications. However, from an optical point of view, miniaturized devices suffer dramatically from the reduced optical path compared to macroscale experiments, e.g. in a cuvette. Obviously, the reduced optical path complicates the application of optical techniques in lab-on-a-chip systems. In this paper we theoretically discuss how a strongly dispersive photonic crystal environment may be used to enhance the light-matter interactions, thus potentially compensating for the reduced optical path in lab-on-a-chip systems. Combining electromagnetic perturbation theory with full-wave electromagnetic simulations we address the prospects for achieving slow-light enhancement of Beer-Lambert-Bouguer absorption, photonic band-gap based refractometry, and high-Q cavity sensing.Comment: Invited paper accepted for the "Optofluidics" special issue to appear in Microfluidics and Nanofluidics (ed. Prof. David Erickson). 11 pages including 8 figure

    Non-invasive screening: The probability of events

    Get PDF
    Congenital anomalies are the cause of 20.0-25.0% of cases of perinatal death, while 3.0% of children are born with malformations of varying size. We examined the predictive values and defined the credibility ratio of the combined test results. Sensitivity of the test is 94.0%, and specificity is 99.0%. The positive likelihood ratio [likelihood ratio test (LR+)] is 94.00; a negative likelihood ratio [likelihood ratio test (LR-)] is 0.06. The pretest probability that pregnant women carry a fetus with chromosomal abnormality is 1:250. Posttest odds after the combined test to discover this abnormality are 0.3760, and probability of the same case is 0.2732 if it happens that the test result is positive. The result of our study confirms the justification of combined test usage in routine clinical practice, since the posttest odds rate in the case of a positive screening increases several times over (almost 90 times); the probability of detecting a chromosomal abnormality was about 70 times

    Photon-mediated interactions between quantum emitters in a diamond nanocavity

    Get PDF
    Photon-mediated interactions between quantum systems are essential for realizing quantum networks and scalable quantum information processing. We demonstrate such interactions between pairs of silicon-vacancy (SiV) color centers coupled to a diamond nanophotonic cavity. When the optical transitions of the two color centers are tuned into resonance, the coupling to the common cavity mode results in a coherent interaction between them, leading to spectrally-resolved superradiant and subradiant states. We use the electronic spin degrees of freedom of the SiV centers to control these optically-mediated interactions. Such controlled interactions will be crucial in developing cavity-mediated quantum gates between spin qubits and for realizing scalable quantum network nodes

    Simulation and Measurement of Pressure Rise in GIS 145 kV due to nternal Arcing

    Get PDF
    Internal arc testing of metal-enclosed, SF6 gas insulated switchgear (GIS) is defined by IEC 62271-203 and is not a part of mandatory type tests. However, due to the increasing demands on the safety of personnel, more often the implementation of this test is required in the tender documentation. According to IEC, the duration of the electric arc is related to the performance of the protective system determined by the first and second stage of protection. For the rated short-circuit current equal or higher than 40 kA, during the first stage of protection (0.1 s), no external effects on enclosure other than the operation of pressure relief device is permitted. During the second stage of protection (≤0.3 s) no fragmentation is permitted, but burn-through is acceptable. The test should be carried out on the GIS compartment with the smallest volume at nominal gas pressure. Since a newly developed GIS 145 kV is designed as a three-phase encapsulated, arc initiation is achieved by short connecting of all three phase conductors in the vicinity of a partition by means of a thin metal wire. This ensures that two electric arcs burn simultaneously commutating between the phases, so the possibility of enclosure burn-through in this type of GIS is minimized. In order to prevent the release of SF6 gas in the atmosphere during the testing, a test enclosure should be placed in a protective gastight enclosure filled with air or more often SF6 gas at pressure of 0.1 MPa. This test object configuration significantly complicates the pressure rise calculation and increases the testing cost. In order to prevent enclosure fragmentation, the pressure difference between the test enclosure and the protective enclosure during the test should always be less than the bursting pressure of test enclosure. Also, the protective enclosure should be designed to withstand the maximum pressure rise that may occur after pressure relief device opens. In order to assess the likelihood of passing the upcoming type test for newly developed GIS, a computer program for calculation of pressure and temperature in the test enclosure and protective enclosure was developed. The mathematical model is based on the paper of the working group CIGRE A3.24, published in 2014. The basic model shown in the paper is enhanced by the real properties of the SF6 gas/plasma, evaporation of the electrode material and the insulator ablation. The contribution of exothermic/endothermic reactions between the gas and the electrode material on the pressure and temperature rise was also considered. At the same time, the measurements of pressure rise in GIS enclosure and protective enclosure were carried out in Končar High Power Laboratory. The experiments performed on a copper and aluminum electrodes in SF6 gas confirmed significantly higher contribution of aluminum electrodes to the pressure and temperature rise compared to the copper electrodes. The computer program is verified by measurement results
    corecore