114 research outputs found

    Gate-Controlled Electron Spin Resonance in a GaAs/AlGaAs Heterostructure

    Full text link
    The electron spin resonance (ESR) of two-dimensional electrons is investigated in a gated GaAs/AlGaAs heterostructure. We found that the ESR resonance frequency can be turned by means of a gate voltage. The front and back gates of the heterostructure produce opposite g-factor shift, suggesting that electron g-factor is being electrostatically controlled by shifting the equilibrium position of the electron wave function from one epitaxial layer to another with different g-factors

    Electron--Electron Scattering in Quantum Wires and it's Possible Suppression due to Spin Effects

    Full text link
    A microscopic picture of electron-electron pair scattering in single mode quantum wires is introduced which includes electron spin. A new source of `excess' noise for hot carriers is presented. We show that zero magnetic field `spin' splitting in quantum wires can lead to a dramatic `spin'-subband dependence of electron--electron scattering, including the possibility of strong suppression. As a consequence extremely long electron coherence lengths and new spin-related phenomena are predicted. Since electron bands in III-V semiconductor quantum wires are in general spin-split in zero applied magnetic field, these new transport effects are of general importance.Comment: 11 pages, LaTeX and APS-RevteX 2, Rep.No. GF66,Figures from author, Physical Review Letters, scheduled for 7 June 199

    Zero-field spin splitting in InAs-AlSb quantum wells revisited

    Full text link
    We present magnetotransport experiments on high-quality InAs-AlSb quantum wells that show a perfectly clean single-period Shubnikov-de Haas oscillation down to very low magnetic fields. In contrast to theoretical expectations based on an asymmetry induced zero-field spin splitting, no beating effect is observed. The carrier density has been changed by the persistent photo conductivity effect as well as via the application of hydrostatic pressure in order to influence the electric field at the interface of the electron gas. Still no indication of spin splitting at zero magnetic field was observed in spite of highly resolved Shubnikov- de Haas oscillations up to filling factors of 200. This surprising and unexpected result is discussed in view of other recently published data.Comment: 4 pages, 3 figures, submitted to Phys. Rev.

    Conductance of a quantum point contact in the presence of spin-orbit interaction

    Get PDF
    A recursive Green's function technique is developed to calculate the spin-dependent conductance in mesoscopic structures. Using this technique, we study the spin-dependent electronic transport of quantum point contacts in the presence of the Rashba spin-orbit interaction. We observed that some oscillations in the `quantized' conductance are induced by the spin-orbit interaction, and indicated that the oscillations may stem from the spin-orbit coupling associated multiple reflections. It is also indicated that the 0.7 structure of the conductance observed in mesoscopic experiments would not stem from the spin-orbit interaction.Comment: 8 page

    Topological defects and Goldstone excitations in domain walls between ferromagnetic quantum Hall effect liquids

    Full text link
    It is shown that the low-energy spectrum of a ferromagnetic quantum Hall effect liquid in a system with a multi-domain structure generated by an inhomogeneous bare Zeeman splitting ϵZ\epsilon_{Z} is formed by excitations localized at the walls between domains. For a step-like ϵZ(r)\epsilon_Z(r), the domain wall spectrum includes a spin-wave with a linear dispersion and a small gap due to spin-orbit coupling, and a low-energy topological defects. The latter are charged and may dominate in the transport under conditions that the percolation through the network of domain walls is provided.Comment: 4 pages, 1 fi

    Dissipation effects in spin-Hall transport of electrons and holes

    Get PDF
    We investigate the spin-Hall effect of both electrons and holes in semiconductors using the Kubo formula in the correct zero-frequency limit taking into account the finite momentum relaxation time of carriers in real semiconductors. This approach allows to analyze the range of validity of recent theoretical findings. In particular, the spin-Hall conductivity vanishes for vanishing spin-orbit coupling if the correct zero-frequency limit is performed.Comment: 5 pages, no figures, version to appear in Phys. Rev.

    Spin-Orbit Interaction Enhanced Fractional Quantum Hall States in the Second Landau Level

    Full text link
    We study the fractional quantum Hall effect at filling fractions 7/3 and 5/2 in the presence of the spin-orbit interaction, using the exact diagonalization method and the density matrix renormalization group (DMRG) method in a spherical geometry. Trial wave functions at these fillings are the Laughlin state and the Moore-Reed-Pfaffian state. The ground state excitation energy gaps and pair-correlation functions at fractional filling factor 7/3 and 5/2 in the second Landau level are calculated. We find that the spin-orbit interaction stabilizes the fractional quantum Hall states.Comment: 4pages, 4figure

    Spin-orbit coupling effect on quantum Hall ferromagnets with vanishing Zeeman energy

    Full text link
    We present the phase diagram of a ferromagnetic quantum Hall effect liquid in a narrow quantum well with vanishing single-particle Zeeman splitting, ϵZ\epsilon_{{\rm Z}} and pronounced spin-orbit coupling. Upon decreasing ϵZ\epsilon_{{\rm Z}}, the spin-polarization field of a liquid takes, first, the easy-axis configuration, followed by the formation of a helical state, which affects the transport and NMR properties of a liquid and the form of topological defects in it. The analysis is extended over high odd integer filling factors.Comment: This revised version takes into account easy-axis terms in the energy and offers a corrected phase diagram of the ferromagnetic QHE liquid. Analysis is extended over higher filling factor

    Filtering spin with tunnel-coupled electron wave guides

    Full text link
    We show how momentum-resolved tunneling between parallel electron wave guides can be used to observe and exploit lifting of spin degeneracy due to Rashba spin-orbit coupling. A device is proposed that achieves spin filtering without using ferromagnets or the Zeeman effect.Comment: 4 pages, 4 figures, RevTex

    Spin Accumulation in Quantum Wires with Strong Rashba Spin-Orbit Coupling

    Full text link
    We present analytical and numerical results for the effect of Rashba spin-orbit coupling on band structure, transport, and interaction effects in quantum wires when the spin precession length is comparable to the wire width. In contrast to the weak-coupling case, no common spin-quantization axis can be defined for eigenstates within a single-electron band. The situation with only the lowest spin-split subbands occupied is particularly interesting because electrons close to Fermi points of the same chirality can have approximately parallel spins. We discuss consequences for spin-dependent transport and effective Tomonaga-Luttinger descriptions of interactions in the quantum wire.Comment: 4 pages, 4 figures, expanded discussion of spin accumulatio
    corecore