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A recursive Green’s function technique is developed to calculate the spin-dependent conductance in
mesoscopic structures. Using this technique, we study the spin-dependent electronic transport of
quantum point contacts in the presence of the Rashba spin–orbit interaction. We observed that some
oscillations in the ‘‘quantized’’ conductance are induced by the spin–orbit interaction, and suggest
that the oscillations may stem from the spin–orbit coupling associated multiple reflections. It is also
indicated that the 0.7 structure of the conductance observed in mesoscopic experiments would not
arise from the spin–orbit interaction. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1469202#
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I. INTRODUCTION

The interaction between the electron spin and its orb
motion, commonly referred to as the spin–orbit~SO! inter-
action or SO coupling, has been known for a long tim
Recently the effect of SO interaction on mesoscopic tra
port phenomena and the quantum Hall effect has attra
growing interest.1–8 Although the interaction magnitude i
small compared to the Fermi energy, it may have signific
impact on electronic transport, particularly in mesosco
systems where quantum interference is extremely import
Using the transfer matrix method, Meiret al.1 showed that
the SO interaction in one-dimensional~1D! noninteracting
disordered rings induces an effective spin-dependent m
netic flux, and then any spin-dependent transport quan
can be expressed in terms of the same quantity in the abs
of the SO scattering but with an effective magnetic flux. T
adiabatic Berry phase induced by the SO interaction and
effect on the electronic transport were studied extensively
Loss et al.,2 Aronov and Lyanda-Geller.3 Persistent currents
in mesoscopic rings induced by the SO interaction was
dressed in Ref. 4. Promisingly, as observed by Morpu
et al.,6 the geometric phase induced by the SO interaction1–5

could induce the splitting of the main peak in the ensem
average Fourier spectrum. Also interestingly, lifting of t
spin degeneracy by the Rashba SO interaction9 was reported
experimentally in two-dimensional~2D! electron systems fo
different semiconductor structures.10 Lommer et al. pointed
out that the Rashba mechanism becomes dominant in a
row gap semiconductor system.11 The spin splitting energy a

a!Author to whom correspondence should be addressed; electronic
zwang@hkucc.hku.hk
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the Fermi energy in the absence of magnetic field isD
52akF ~with a as a SO coupling constant andkF as the
Fermi wave vector!, which is about 1.0;5.0 meV in typical
semiconductor materials.10

On the other hand, the observation of the universal12,13

and the nonuniversal14 quantizations of the conductance in
quasi-1D constrication is also remarkable. In a cle
quasi-1D constrication, if the mean free path is much lon
than the effective channel length, the conductance is qu
tized in unit of 2G0 with G05e2/h at zero magnetic field,
referred to as the universal quantization, where the facto
2 arises from the electron spin degeneracy.12,13 Recently,
Thomas and co-workers found that, in addition to the abo
quantized conductance plateau, there is also a structur
0.7(2G0). This so-called 0.7 structure~nonuniversal or frac-
tional conductance quantization! appears to be related t
spontaneous lifting of spin degeneracy in the 1D constri
tion, but the origin of it remains as an open question.14 Since
the 0.7 structure may be understood as a zero-field spin s
ting with an estimated energy ofD;1 meV,14 which is of
the same order as the spin splitting energy induced by the
interaction, it is nature to ask an important question: Is
spin polarization induced by the SO coupling responsible
the 0.7 structure? To answer this question, we study the
fect of SO interaction on the electronic transport throu
quantum point contacts~QPC! in this paper. We find that the
0.7 structure is unlikely to stem from the SO interactio
However, some interesting oscillations in the quantized c
ductance may be induced by the SO interaction, and ma
experimentally observable. Moreover, the spin-depend
transport properties are of current interest in both fundam
tal physics and applied spin electronics. It is quite intrigui
to develop a method to calculate the spin-dependent tr
il:
5 © 2002 American Institute of Physics
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port in mesoscopic systems. Also in this paper, generalizin
method established for spin-independent cases15,16 we have
done such a job. It is worth pointing out that another the
retical approach17 may be generalized to calculate the sp
dependent conductance.

The paper is organized as follows. In Sec. II A, we d
rive the 2D tight-binding Hamiltonian with the Rashba S
coupling. In Sec. II B, the recursive Green’s function tec
nique is presented to calculate the spin-dependent trans
sion coefficient. In Sec. III the conductance is calculated
merically in a model QPC in the presence of SO coupl
and/or magnetic field. The finite temperature effect is a
studied. This paper ends with a brief summary.

FIG. 1. Schematic diagram of the system. Electrons are injected from
left lead.
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II. MODEL AND CALCULATION METHOD

A. 2D tight-binding Hamiltonian with the Rashba SO
coupling

In a magnetic field, the 2D Hamiltonian for electrons~of
effective massm* and chargee! with the Rashba SO inter
action reads:9

H5
Px

21Py
2

2m*
1

a

\
~ŝxPy2ŝyPx!

1U~x,y!2
gmB

2
sŴ •B, ~1!

whereP5p2 (e/c) A is the canonical momentum,U(x,y)
represents the spin-independent potential,A is the electro-
magnetic gauge potential withB5¹3A relating it to the

magnetic fields, andg, mB , sŴ are theg factor, Bohr magne-
ton, and Pauli matrices respectively.a is the Rashba SO
interaction constant which is determined from an effect
electric field along thez direction given by the form of the
confining potential in the absence of an inversion cen
Now we choose a discrete square lattice, on which points
located atx5na andy5ma, with n andm as integers anda
as the lattice constant. In terms of the quaternion, the o
electron tight-binding Hamiltonian with the Rashba SO co
pling can now be parameterized as

e

H5(
nm

enmunm&^nmu2(
nm

~Vnm,n21munm&^n21mu1Vnm,nm21unm&^nm21u1H.C.!, ~2!
where unm& is a two-component orthonormal set in the la
tice sites (n,m); enm5(Unm14t)t02 igt3 with Unm5U(x
5na,y5ma), t5\2/2m* a2, g5gmBBz/2; Vnm,n21m

5Vx exp(2ieAxa/\) andVnm,nm215Vy exp(2ieAya/\) with
Vx5tt02a8t2 , Vy5tt01a8t1 anda85a/2a. The quater-
nion basis$t i% is defined by the 232 unit matrixt0 andt l

52 i ŝ l ( l 51,2,3) withŝ l as the Pauli matrices.Ax or Ay is
evaluated at the middle point between sites (n,m) and (n
11,m) or (n,m11).

B. Model and the recursive Green’s function
technique

To describe spin-dependent transport properties thro
a specific mesoscopic structure, we consider a 2D struc
composed of three different regions~Fig. 1!. The shadowed
central zone is a mesoscopic structure where the SO coup
and/or a homogeneous perpendicular magnetic field
present. To simplify scattering boundary conditions, we
sume that the structure is connected to both sides with s
infinite ideal leads without SO interaction and magnetic fie
In our lattice model atoms are at the sites of a square la
(na, ma) ~with a to be set equal to unit,m51,2,̄ ,M !. in
the shadowed zone and two ideal leads. As a result the
tem is described by a one-electron tight-binding Hamilton
h
re

ng
re
-
i-

.
e

s-
n

similar to Eq. ~2!. For a homogeneous magnetic fieldB
5(0, 0, B! perpendicular to the 2D plane@A5(2yB, 0, 0!
in the Landau gauge#, we can write the Hamiltonian for the
shadowed central zone as

Hc5 (
n51

N

un)Hn(nu1 (
n51

N21

@ un!Hn,n11~n11u1H.C.#,

~3!

whereun) is the set of 2M ket vectors belonging to thenth
cell, and

Hn[Hn,n5S en1 2Vy
1 0 ¯ 0

2Vy en2 2Vy
1

¯ 0

0 2Vy en3 ¯ 0

] ] ] � ]

0 0 0 ¯ enM

D , ~4!

~Hn,n11!pp852Vx
1e2 i2pb[ p2 ~M11!/2]dpp8

~p,p851,̄ ,M !. ~5!



-
h

th
op

e

s

th

i-

e

th

ut
th
o

pi
ur
a

or

th
et

is
e
ed
-
w
th

y

an-
ion

r

ron-
de
for
is

he
me-

re-
to

y
ce

6547J. Appl. Phys., Vol. 91, No. 10, 15 May 2002 Zhu, Wang, and Hu
Hereb5Ba2/f0 with f05hc/e as the magnetic flux quan
tum. The forms of Hamiltonian for the two ideal leads are t
same as Eq.~3!, but with different summing regions (2`
,n,1 at the left lead andN,n,` at the right lead! and
different values of the parameters:Vx5Vy5tt0 , enm

54tt0 , B50. Moreover, it seems acceptable to assume
the coupling between the ideal leads and the mesosc
structure takes simply the formH0,15HN,N1152tdpp8 .18

Following the recursive Green’s function technique d
veloped for some spin-independent systems,15,16,19 we may
generalize the method to the nontrivial spin-dependent ca

The spin-dependent transmissiont l j
ss8 for the incident chan-

nel (l ,s) and out-going channel (j ,s8) can be found readily
~see the Appendix!. At a finite temperatureT, the conduc-
tance through a 2D mesoscopic structure is given by
Landauer-Bu¨ttiker formula20

G52G0 (
l j ,ss8

E
0

`

Tl j
ss8

] f ~E,T!

]E
dE, ~6!

where Tl j
ss85ut l j

ss8u2 is determined from Eq.~A3!, and
f (E,T)5@11exp(E2Ef)/kBT#21 is the Fermi–Dirac distri-
bution function withkB as the Boltzmann constant. Obv

ously, Eq.~6! reduces toG5G0($ l j ,ss8%Tl j
ss8 at zero tem-

perature.
In the following, we focus on a QPC structure with th

Büttiker saddle-point potential

Unm5V02 1
2 m* vx

2a2@n2~N11!/2#2

1 1
2 m* vy

2a2@m2~M11!/2#2, ~7!

which is a practical candidate to describe a real QPC.21 vx,y

indicate the strength of the lateral confinement. Note that
well-pronounced quantized plateaus occur ifvy>vx .

Before the end of this section, it is worth pointing o
that the recursive Green’s function method described in
section can be straightforwardly generalized to 3D mes
copic structures, and thus is quite useful in studying the s
dependent transport of many different mesoscopic struct
which are of current interest, such as the devices with qu
tum Hall effect, giant magnetoresistance, tunnel magnet
sistence.

III. NUMERICAL RESULTS

We now calculate numerically the conductance of
QPC in the presence of SO interaction and/or a magn
field. We here present the results for the system ofM57,
N515,22 and t51.

A. The effects of SO interaction

It is well known that the conductance through QPC
quantized with the unit of 2G0 as a function of the saddl
energyV0 . The conductance quantization is well explain
by Landauer–Bu¨ttiker formula of quantum ballistic trans
port: for a nonmagnetic QPC, the spin-up and spin-do
electrons make the same contribution and then the unit of
conductance quantization is 2G0 . However, if the Rashba
SO interaction is present in the QPC, the spin degenerac
e
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conductance electrons would be broken. Whether the qu
tization of the conductance is affected by the SO interact
in a meaningful sense?

Figure 2 shows the conductanceG as a function ofV0

for the SO parametersa850, 0.005, 0.01, and 0.015. Othe
parameters areEf51.21, vy53vx . Two effects of the SO
interaction on the conductance are seen.~i! The SO interac-
tion induces some oscillations on the plateaus, and the st
ger the SO-interaction is the larger the oscillation amplitu
is. Remarkably, some sharp dips exist on the oscillation
the strong SO coupling, for example, the height of dip
almost 2G0 for a8;0.015. ~ii ! A tiny plateau exists near
0.7(2G0) for a weak SO interactiona;0.005 ~we will ad-
dress the temperature effect on this tine plateau later!. But it
becomes a sharp dip for the strong SO interaction~see the
inset of Fig. 2!. The conductance oscillations as well as t
sharp dips in the plateaus may be observable in future
soscopic experiments.

We now attempt to understand the above numerical
sults heuristically. The conductance oscillations appear
stem from the multiple reflections with the SO coupling. B
taking into account the multiple reflections, the conductan
of the QPC may be rewritten as12

G5G0(
j s

~12Rj s!2

122Rj s cos~2kj sLx!1Rj s
2 , ~8!

where the reflection probabilityRj s for channel (j ,s) is
given by

Rj s5S y j
L2y j s

c

y j
L1y j s

c D 2

, ~9!

FIG. 2. The conductanceG versus the saddle energyV0 ~in unit of Ef! in
the presence of SO interaction forb5kBT50, Ef51.21, vy53vx . The
inset shows an enlargement of the curve around the arrow.
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with y j
L (y j s

c ) as the value of velocity in the leads~scattering
zone!. y j s

c 5]Ej s
c /\]k is determined by the dispersion rel

tion for the electron states in the QPC, which is appro
mately written as

Ej
c'\2kj

2/2m* 1~ j 21/2!\vy1V0 ~10!

~independent ons! in the absence of the SO coupling,12 but
as

Ej s
c '\2kj s

2 /2m* 1saukj su1~ j 21/2!\vy1V0 , ~11!

in the presence of SO coupling. Here we only consider
energy spectrum atx50 since the transport properties for th
Büttiker saddle-point potential depend mainly on the narro
est part. Note that the quantized plateaus are w
pronounced in the absence of the SO coupling~as shown in
Fig. 2! sincey j

c5\2kj /m* ;y j
L and thusRj for a propagat-

ing model in the Bu¨ttiker saddle-point potential is negligible
However, the additionalRj s may be induced from the SO
coupling because as seen from Eq.~11! y j s

c in the presence o
SO coupling is different from that in the absence of SO c
pling. Therefore, the oscillations may stem from the SO c
pling since Eq.~8! predicts the transmission oscillations, pr
vided that Rj s induced by the SO coupling are not to
small.23 Moreover, we can understand from Eqs.~8! and ~9!
that a dip in the conductance may appear for a relativ
larger Rj s when an electron in the channel (j ,s) is in a
propagating state (kj s.0) with y j s

c ;0. It is interesting to
note from Eq.~11! that y j 2

c 50 for k̃ j5m* a/\2, which cor-
responds the minimum ofEj s

c as a function of momentum
WhenV0 varies in the scale of magnitude;a k̃ j , y j

c;0 for
the samey j

L-channel as in the absence of SO coupling. T
clearly shows that a largerRj s may appear in a narrow re
gion in the presence of the SO coupling, leading to a d
Our numerical results in Fig. 2 agree qualitatively with t
above arguments.

We now look into whether the interesting behaviors se
in Fig. 2 are sensitive to the set of parameters. First, we
Figs. 3~a! and 3~b! for two other differentvy /vx ~the other
parameters are the same as those in Fig. 2!. The plateaus are
not well pronounced forvy51.5vx even if a850 @Fig.
3~a!#. In this case, the SO-induced oscillations are not
distinctive with the conductance curve fora850, but the
sharp dips still appear in the conductance. Forvy56vx @Fig.
3~b!#, the width of the plateaus is widened. Comparing
results in Figs. 2, 3~a!, and 3~b!, we found that the well-
pronounced plateaus occur for larger ratiovy /vx , which is
due to the Bu¨ttiker saddle-point potential. We also notice
that the effects induced by the SO coupling are similar
those in Fig. 2. Second, we plot Figs. 3~c! and 3~d! for two
other different Fermi energies~the other parameters are th
same as those in Fig. 2!. It is seen that the main effect
induced by the SO coupling are still similar to those in F
2. Therefore, we may conclude that the essential feature
duced by the SO coupling in Fig. 2 is not quite sensitive
the Fermi energy and the ratio ofvy /vx , but is indeed sen-
sitive to the SO coupling parametera8.

The temperature dependence of the conductance
function ofV0 can be seen from Figs. 4~a! and 4~b!. First, in
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certain temperature regions, the oscillation induced by
SO-interaction disappears when the temperature increa
meanwhile the quality of the quantized plateaus is improv
However the quantized plateaus are destroyed when t
perature increases further. The mechanism for the destruc
of the quantized plateaus by the finite temperature is ene
averaging.12 Secondly, the tine plateau and the dip ne
0.7(2G0) are destroyed by energy averaging before the in
ger plateaus disappear. However the 0.7 structure obse
by Thomaset al. is still observable even at a temperatu
when all the integer quantized plateaus disappear.14 This ob-
vious different temperature effect on the quantization c
ductance suggests that the 0.7 structure should not stem
the SO-interaction. Finally, the quantized plateaus disapp
atkBT;0.1 fora850.005, while the plateaus is still obviou
at this temperature fora850.01 ~the plateau disappears at
higher temperaturekBT;0.12).

B. The effects of magnetic fields

We now discuss the effect of a perpendicular magne
field on the conductance quantization: the Zeeman effect
the Peierls phase factor. In many theoretical calculations,
Zeeman effect is usually ignored for simplicity. Here we co
sider both the Peierls phase and the Zeeman effect. Fig
5~a! and 5~b! show the field-dependent conductance as
function of V0 for a850, 0.01, respectively. From Fig. 5
one of the characteristic features of QPCs in a magnetic fi
is that conductance steps begin to appear at odd integer
tiples ofG0 at b>0.09, due to the lifting of the spin degen
eracy by the Zeeman effect. Another feature is that the wi
of the plateaus is widened when compared to theb50 case.
On the other hand, the number of effective subbands is
creased when the magnetic field is applied, and actually
proportional to 1/b.12 Moreover, Fig. 5~b! shows that the
oscillation as well as the sharp dips are destroyed at h
fields. Thus the quality of the quantization is improved wh
the magnetic field is applied. Certainly, the effect of the S
interaction is suppressed by a high magnetic field.

IV. CONCLUSIONS AND DISCUSSIONS

The SO interaction is equivalent to a momentu
dependent effective magnetic field.1,3,4 However, comparing
with a genuine magnetic field, there exist some essential
ferences in the energy spectra of electrons induced by
effective field or a genuine field7 that induce several signifi
cant different effects on the conductance. Firstly, spin s
energyD induced by the SO interaction atuki50u is zero,
while the spectrum induced by a genuine field is determin
by the nonzero Zeeman energygmBz . This is the reason the
conductance steps do not appear at odd integer multiple
G0 in the presence of SO interaction but do in a zero m
netic field, noting the appearance of this kind of quantiz
plateaus is the essential feature induced by a genuine fi
Secondly, in the presence of SO coupling, there exist bum
~a nonmonotonic portion! in the spectrum as a function o
transverse momentum, while the spectrum is a monoton
function of the momentum in the presence of a genuine m
netic field. Therefore, the reflections at the scattering reg
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in the presence of SO coupling may induce by the nega
velocity for k.0.12 It provides us another way to understa
the transmission oscillations. Finally, the SO interaction c
remove the spin degeneracy in the band structure but c
not lead to an overall spin polarization.7 Consequently, the
0.7 structure is unlikely induced by the SO interaction.
the other hand, the results addressed in the presence of
netic field may be restricted within weak field since the no
interacting electron model used in the recursive Gree
function is invalid in a very strong magnetic field.

We are now concerned with the possible experimen
test of the above SO-induced properties. In unit oft, a8
5m* aa/\2, which is estimated to be (0.54;5.4)31023 for
some typical semiconductors.~Here we choose the param
eters of InAs, where a;0.608 nm, a;(1.0;10.0)
310210 ev cm, andm* ;0.067me with me as the mass of a
free electron.10! Thus the oscillations induced by SO co
e

n
ld

ag-
-
’s

l

pling may be experimentally observable, depending crucia
on the value ofa8.

Finally, we wish to make a few remarks on why th
SO-induced effects on the quantized conductance have
been observed in experiments so far. First, the experime
observation on the SO-induced phenomenon would cruci
depend on the value ofa8, but a8 in some typical semicon-
ductor systems may be relatively small based on the ab
estimation. Thus it is helpful to increase the coupling coe
cient in experiments. As indicated by Heidaet al.,10 two
methods may be used to increase the coefficienta in meso-
scopic experiments: one is to increase the electron densitns

in QPC sincea is proportional tons ; and the other is to vary
the gate bias that controls the magnitude of the SO inte
tion. On the other hand, a larger effective mass of cha
carriers would also be helpful for observing the SO-induc
oscillations in experiments. Second, the SO coupling in
FIG. 3. The conductanceG versus the saddle energyV0 in the presence of SO interaction forb5kBT50. ~a! Ef51.21, vy51.5vx ; ~b! Ef51.21, vy

56vx ; ~c! Ef52.0, vy53vx ; ~d! Ef51.0, vy53vx .
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leads has been neglected in the present study. This app
mation may enhance the oscillations observed above
though the Rashba SO coupling in QPC is larger than tha
the leads.24 It is extremely difficult to include the SO cou
pling in the leads using the present method because the
lytical wave function in the leads should be given; while
appears to be unsolvable in the leads with the SO coupl
Nevertheless, with the advancement of nanotechnology,
possible to fabricate a mesoscopic structure in which the
coupling is important only in the QPC~i.e., negligible in the
two leads!. In such systems, it could be easier to observe
SO-induced effects predicted here.

In conclusion, we have generalized a recursive Gree
function approach to calculate numerically the sp
dependent conductance in mesoscopic structures in the
ence of SO interaction and magnetic field. The effect of
interaction on the conductance of a QPC is studied in de
Some interesting oscillations in conductance induced by

FIG. 4. The conductanceG vs V0 at finite temperatures for different SO
interactions.~a! a850.005, with the inset showing an enlargement of t
curve around the arrow;~b! a850.01. Other parameters areEf51.21, vy

53vx .
xi-
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in
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SO interaction have been observed numerically, which m
be tested by future mesoscopic experiments.
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APPENDIX

In the appendix we present the recursive Green’s fu
tion approach to calculate the spin-dependent transmis

t l j
ss8 . The electron wave functions in the stripn of the leads

can be expressed as a linear combination of eigenfunct
of a straight infinite lead at a given energyE. If the incident
electron from the left lead is in the (l ,s) channel withl and
s as the subband and spin indices, respectively, the scatte
states are represented as

un) left5eiklnfkls
1(

j s8
r l j

ss8e2 ik j nfkjs8 , ~A1!

FIG. 5. The conductanceG vs V0 in the presence of magnetic field.~a!
a850, kBT50; ~b! a850.01,kBT50. Other parameters areEf51.21, vy

53vx .
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un)right5(
j s8

t l j
ss8eik jnfkjs8 , ~A2!

where t l j
s,s8 (r l j

s,s8) is the transmission~reflection! ampli-
tudes for the incident channel (l ,s) and out-going channe
( j ,s8), and the wave functionsfkjs

are given byfkjs

5fkj
^ x(sz) with

fkj
5A 2

M11S sin
p j

M11
, ¯ ,sin

p jm

M11
,¯ ,sin

p jM

M11D Tr

,

and

x~1 !5S 1
0D , x~2 !5S 0

1D .

Here the signTr denotes the transposition of matrix. Th
number of open channels and the value ofkj are determined
by the Fermi energy from the energy dispersion in id
leads:

E54t22tFcoskj1cosS p j

M11D G .
Only if kj is real do we have a propagating state; we have
evanescent state whenkj is imaginary. All realkjs are posi-
tive, because we have already considered separately
states propagating to the right~incident and transmitted
wave! or to the left~reflected wave!. Following the recursive
Green’s function technique, we find

t l j
ss85Ay j /y l fkjs8

1 GN11,0Q~s!fkls
e2 ik j Lx, ~A3!

where

y j5
1

\

]E

]kj
,

Q~s!522i t(
l 51

M

sinkl@Ql ^ z~sz!#,

with

~Ql !pp85
2

M11
sinS lpp

M11D sinS lpp8

M11D ,

~p,p851,̄ ,M !,

z~1 !5S 1 0

0 0D , z~2 !5S 0 0

0 1D .

The set of vectorsfkjs8
1 are the duals of the setfkls

, defined

by fkjs8
1 fkls

5d j l ds8s . GN11,0 is the retarded Green’s func

tion for the scattering region between two ideal leads, wh
can be obtained by a set of recursion formulas in a ma
form:25

Gn811,05gn811Hn811,n8Gn8,0 , ~0<n8<N!, ~A4!

gn8115@E2H̃n8112Ln8#21, ~A5!

~Ln8!pp85ei2p(p2p8)bVx
1~gn8!pp8Vx ,

~p,p851,̄ ,M !, ~A6!
l

n

the

h
ix

by iteration starting fromg05G0,05(E2H̃0)21, whereH̃0

5H02tF(s in), H̃ l5Hl (1< l<N), H̃N115HN11

2tF(sout) with s in (sout) as the spin state of the inciden
~outgoing! electrons, and

F~s!5(
j 51

M

eik j@Qj ^ z~sz!#. ~A7!

It is worth pointing out that each element of Green’s functi
in the above recursion formula is given by a quaternion nu
ber in the presence of the SO interaction or the Zeem
effect.26 In the numerical calculations ofGN11,0 andQ(s) in
Eq. ~A3!, we have used explicitly the multiplication table fo
quaternion number.
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