490 research outputs found
Quantum Gravity and Matter: Counting Graphs on Causal Dynamical Triangulations
An outstanding challenge for models of non-perturbative quantum gravity is
the consistent formulation and quantitative evaluation of physical phenomena in
a regime where geometry and matter are strongly coupled. After developing
appropriate technical tools, one is interested in measuring and classifying how
the quantum fluctuations of geometry alter the behaviour of matter, compared
with that on a fixed background geometry.
In the simplified context of two dimensions, we show how a method invented to
analyze the critical behaviour of spin systems on flat lattices can be adapted
to the fluctuating ensemble of curved spacetimes underlying the Causal
Dynamical Triangulations (CDT) approach to quantum gravity. We develop a
systematic counting of embedded graphs to evaluate the thermodynamic functions
of the gravity-matter models in a high- and low-temperature expansion. For the
case of the Ising model, we compute the series expansions for the magnetic
susceptibility on CDT lattices and their duals up to orders 6 and 12, and
analyze them by ratio method, Dlog Pad\'e and differential approximants. Apart
from providing evidence for a simplification of the model's analytic structure
due to the dynamical nature of the geometry, the technique introduced can shed
further light on criteria \`a la Harris and Luck for the influence of random
geometry on the critical properties of matter systems.Comment: 40 pages, 15 figures, 13 table
Loop Variable Inequalities in Gravity and Gauge Theory
We point out an incompleteness of formulations of gravitational and gauge
theories that use traces of holonomies around closed curves as their basic
variables. It is shown that in general such loop variables have to satisfy
certain inequalities if they are to give a description equivalent to the usual
one in terms of local gauge potentials.Comment: 10pp., TeX, Syracuse SU-GP-93/3-
On the diffeomorphism commutators of lattice quantum gravity
We show that the algebra of discretized spatial diffeomorphism constraints in
Hamiltonian lattice quantum gravity closes without anomalies in the limit of
small lattice spacing. The result holds for arbitrary factor-ordering and for a
variety of different discretizations of the continuum constraints, and thus
generalizes an earlier calculation by Renteln.Comment: 16 pages, Te
Perturbative Analysis of the Two-body Problem in (2+1)-AdS gravity
We derive a perturbative scheme to treat the interaction between point
sources and AdS-gravity. The interaction problem is equivalent to the search of
a polydromic mapping , endowed with 0(2,2) monodromies,
between the physical coordinate system and a Minkowskian 4-dimensional
coordinate system, which is however constrained to live on a hypersurface. The
physical motion of point sources is therefore mapped to a geodesic motion on
this hypersuface. We impose an instantaneous gauge which induces a set of
equations defining such a polydromic mapping. Their consistency leads naturally
to the Einstein equations in the same gauge. We explore the restriction of the
monodromy group to O(2,1), and we obtain the solution of the fields
perturbatively in the cosmological constant.Comment: 19 pages, no figures, LaTeX fil
(2+1)-Dimensional Quantum Gravity as the Continuum Limit of Causal Dynamical Triangulations
We perform a non-perturbative sum over geometries in a (2+1)-dimensional
quantum gravity model given in terms of Causal Dynamical Triangulations.
Inspired by the concept of triangulations of product type introduced
previously, we impose an additional notion of order on the discrete, causal
geometries. This simplifies the combinatorial problem of counting geometries
just enough to enable us to calculate the transfer matrix between boundary
states labelled by the area of the spatial universe, as well as the
corresponding quantum Hamiltonian of the continuum theory. This is the first
time in dimension larger than two that a Hamiltonian has been derived from such
a model by mainly analytical means, and opens the way for a better
understanding of scaling and renormalization issues.Comment: 38 pages, 13 figure
Independent Loop Invariants for 2+1 Gravity
We identify an explicit set of complete and independent Wilson loop
invariants for 2+1 gravity on a three-manifold , with
a compact oriented Riemann surface of arbitrary genus . In the
derivation we make use of a global cross section of the -principal
bundle over Teichm\"uller space given in terms of Fenchel-Nielsen coordinates.Comment: 11pp, 2 figures (postscript, compressed and uu-encoded), TeX,
Pennsylvania State University, CGPG-94/7-
A non-perturbative Lorentzian path integral for gravity
A well-defined regularized path integral for Lorentzian quantum gravity in
three and four dimensions is constructed, given in terms of a sum over
dynamically triangulated causal space-times. Each Lorentzian geometry and its
associated action have a unique Wick rotation to the Euclidean sector. All
space-time histories possess a distinguished notion of a discrete proper time.
For finite lattice volume, the associated transfer matrix is self-adjoint and
bounded. The reflection positivity of the model ensures the existence of a
well-defined Hamiltonian. The degenerate geometric phases found previously in
dynamically triangulated Euclidean gravity are not present. The phase structure
of the new Lorentzian quantum gravity model can be readily investigated by both
analytic and numerical methods.Comment: 11 pages, LaTeX, improved discussion of reflection positivity,
conclusions unchanged, references update
Counting a black hole in Lorentzian product triangulations
We take a step toward a nonperturbative gravitational path integral for
black-hole geometries by deriving an expression for the expansion rate of null
geodesic congruences in the approach of causal dynamical triangulations. We
propose to use the integrated expansion rate in building a quantum horizon
finder in the sum over spacetime geometries. It takes the form of a counting
formula for various types of discrete building blocks which differ in how they
focus and defocus light rays. In the course of the derivation, we introduce the
concept of a Lorentzian dynamical triangulation of product type, whose
applicability goes beyond that of describing black-hole configurations.Comment: 42 pages, 11 figure
Bounding bubbles: the vertex representation of 3d Group Field Theory and the suppression of pseudo-manifolds
Based on recent work on simplicial diffeomorphisms in colored group field
theories, we develop a representation of the colored Boulatov model, in which
the GFT fields depend on variables associated to vertices of the associated
simplicial complex, as opposed to edges. On top of simplifying the action of
diffeomorphisms, the main advantage of this representation is that the GFT
Feynman graphs have a different stranded structure, which allows a direct
identification of subgraphs associated to bubbles, and their evaluation is
simplified drastically. As a first important application of this formulation,
we derive new scaling bounds for the regularized amplitudes, organized in terms
of the genera of the bubbles, and show how the pseudo-manifolds configurations
appearing in the perturbative expansion are suppressed as compared to
manifolds. Moreover, these bounds are proved to be optimal.Comment: 28 pages, 17 figures. Few typos fixed. Minor corrections in figure 6
and theorem
Unexpected Spin-Off from Quantum Gravity
We propose a novel way of investigating the universal properties of spin
systems by coupling them to an ensemble of causal dynamically triangulated
lattices, instead of studying them on a fixed regular or random lattice.
Somewhat surprisingly, graph-counting methods to extract high- or
low-temperature series expansions can be adapted to this case. For the
two-dimensional Ising model, we present evidence that this ameliorates the
singularity structure of thermodynamic functions in the complex plane, and
improves the convergence of the power series.Comment: 10 pages, 4 figures; final, slightly amended version, to appear in
Physica
- …