2,650 research outputs found
Asymptotics of Quantum Relative Entropy From Representation Theoretical Viewpoint
In this paper it was proved that the quantum relative entropy can be asymptotically attained by Kullback Leibler divergences of
probabilities given by a certain sequence of POVMs. The sequence of POVMs
depends on , but is independent of the choice of .Comment: LaTeX2e. 8 pages. The title was changed from "Asymptotic Attainment
for Quantum Relative Entropy
Kinematic approach to the mixed state geometric phase in nonunitary evolution
A kinematic approach to the geometric phase for mixed quantal states in
nonunitary evolution is proposed. This phase is manifestly gauge invariant and
can be experimentally tested in interferometry. It leads to well-known results
when the evolution is unitary.Comment: Minor changes; journal reference adde
Quantum thermodynamics with missing reference frames: Decompositions of free energy into non-increasing components
If an absolute reference frame with respect to time, position, or orientation
is missing one can only implement quantum operations which are covariant with
respect to the corresponding unitary symmetry group G. Extending observations
of Vaccaro et al., I argue that the free energy of a quantum system with
G-invariant Hamiltonian then splits up into the Holevo information of the orbit
of the state under the action of G and the free energy of its orbit average.
These two kinds of free energy cannot be converted into each other. The first
component is subadditive and the second superadditive; in the limit of
infinitely many copies only the usual free energy matters.
Refined splittings of free energy into more than two independent
(non-increasing) terms can be defined by averaging over probability measures on
G that differ from the Haar measure.
Even in the presence of a reference frame, these results provide lower bounds
on the amount of free energy that is lost after applying a covariant channel.
If the channel properly decreases one of these quantities, it decreases the
free energy necessarily at least by the same amount, since it is unable to
convert the different forms of free energies into each other.Comment: 17 pages, latex, 1 figur
The Potential-Density Phase Shift Method for Determining the Corotation Radii in Spiral and Barred Galaxies
We have developed a new method for determining the corotation radii of
density waves in disk galaxies, which makes use of the radial distribution of
an azimuthal phase shift between the potential and density wave patterns. The
approach originated from improved theoretical understandings of the relation
between the morphology and kinematics of galaxies, and on the dynamical
interaction between density waves and the basic-state disk stars which results
in the secular evolution of disk galaxies. In this paper, we present the
rationales behind the method, and the first application of it to several
representative barred and grand-design spiral galaxies, using near-infrared
images to trace the mass distributions, as well as to calculate the potential
distributions used in the phase shift calculations. We compare our results with
those from other existing methods for locating the corotations, and show that
the new method both confirms the previously-established trends of bar-length
dependence on galaxy morphological types, as well as provides new insights into
the possible extent of bars in disk galaxies. Application of the method to a
larger sample and the preliminary analysis of which show that the phase shift
method is likely to be a generally-applicable, accurate, and essentially
model-independent method for determining the pattern speeds and corotation
radii of single or nested density wave patterns in galaxies. Other implications
of this work are: most of the nearby bright disk galaxies appear to possess
quasi-stationary spiral modes; that these density wave modes and the associated
basic state of the galactic disk slowly transform over time; and that
self-consistent N-particle systems contain physics not revealed by the passive
orbit analysis approaches.Comment: 48 pages, 16 figures. Accepted for publication in the Astronomical
Journa
Quantum ratchets in dissipative chaotic systems
Using the method of quantum trajectories we study a quantum chaotic
dissipative ratchet appearing for particles in a pulsed asymmetric potential in
the presence of a dissipative environment. The system is characterized by
directed transport emerging from a quantum strange attractor. This model
exhibits, in the limit of small effective Planck constant, a transition from
quantum to classical behavior, in agreement with the correspondence principle.
We also discuss parameter values suitable for implementation of the quantum
ratchet effect with cold atoms in optical lattices.Comment: Significant changes: Several text improvements and new results.
Figure 2 modified. Figure 4 adde
Generalized and weighted Strichartz estimates
In this paper, we explore the relations between different kinds of Strichartz
estimates and give new estimates in Euclidean space . In
particular, we prove the generalized and weighted Strichartz estimates for a
large class of dispersive operators including the Schr\"odinger and wave
equation. As a sample application of these new estimates, we are able to prove
the Strauss conjecture with low regularity for dimension 2 and 3.Comment: Final version, to appear in the Communications on Pure and Applied
Analysis. 33 pages. 2 more references adde
Decoherence due to contacts in ballistic nanostructures
The active region of a ballistic nanostructure is an open quantum-mechanical
system, whose nonunitary evolution (decoherence) towards a nonequilibrium
steady state is determined by carrier injection from the contacts. The purpose
of this paper is to provide a simple theoretical description of the
contact-induced decoherence in ballistic nanostructures, which is established
within the framework of the open systems theory. The active region's evolution
in the presence of contacts is generally non-Markovian. However, if the
contacts' energy relaxation due to electron-electron scattering is sufficiently
fast, then the contacts can be considered memoryless on timescales coarsened
over their energy relaxation time, and the evolution of the current-limiting
active region can be considered Markovian. Therefore, we first derive a general
Markovian map in the presence of a memoryless environment, by coarse-graining
the exact short-time non-Markovian dynamics of an abstract open system over the
environment memory-loss time, and we give the requirements for the validity of
this map. We then introduce a model contact-active region interaction that
describes carrier injection from the contacts for a generic two-terminal
ballistic nanostructure. Starting from this model interaction and using the
Markovian dynamics derived by coarse-graining over the effective memory-loss
time of the contacts, we derive the formulas for the nonequilibrium
steady-state distribution functions of the forward and backward propagating
states in the nanostructure's active region. On the example of a double-barrier
tunneling structure, the present approach yields an I-V curve with all the
prominent resonant features. The relationship to the Landauer-B\"{u}ttiker
formalism is also discussed, as well as the inclusion of scattering.Comment: Published versio
Qubit quantum channels: A characteristic function approach
A characterization of qubit quantum channels is introduced. In analogy to
what happens in the context of Bosonic channels we exploit the possibility of
representing the states of the system in terms of characteristic function. The
latter are functions of non-commuting variables (Grassmann variables) and are
defined in terms of generalized displacement operators. In this context we
introduce the set of Gaussian channels and show that they share similar
properties with the corresponding Bosonic counterpart.Comment: 10 pages (minor editing
Optimal Control of Quantum Dissipative Dynamics: Analytic solution for cooling the three level system
We study the problem of optimal control of dissipative quantum dynamics.
Although under most circumstances dissipation leads to an increase in entropy
(or a decrease in purity) of the system, there is an important class of
problems for which dissipation with external control can decrease the entropy
(or increase the purity) of the system. An important example is laser cooling.
In such systems, there is an interplay of the Hamiltonian part of the dynamics,
which is controllable and the dissipative part of the dynamics, which is
uncontrollable. The strategy is to control the Hamiltonian portion of the
evolution in such a way that the dissipation causes the purity of the system to
increase rather than decrease. The goal of this paper is to find the strategy
that leads to maximal purity at the final time. Under the assumption that
Hamiltonian control is complete and arbitrarily fast, we provide a general
framework by which to calculate optimal cooling strategies. These assumptions
lead to a great simplification, in which the control problem can be
reformulated in terms of the spectrum of eigenvalues of , rather than
itself. By combining this formulation with the Hamilton-Jacobi-Bellman
theorem we are able to obtain an equation for the globaly optimal cooling
strategy in terms of the spectrum of the density matrix. For the three-level
system, we provide a complete analytic solution for the optimal
cooling strategy. For this system it is found that the optimal strategy does
not exploit system coherences and is a 'greedy' strategy, in which the purity
is increased maximally at each instant.Comment: 9 pages, 3 fig
- …
