2,650 research outputs found

    Asymptotics of Quantum Relative Entropy From Representation Theoretical Viewpoint

    Full text link
    In this paper it was proved that the quantum relative entropy D(σρ)D(\sigma \| \rho) can be asymptotically attained by Kullback Leibler divergences of probabilities given by a certain sequence of POVMs. The sequence of POVMs depends on ρ\rho, but is independent of the choice of σ\sigma.Comment: LaTeX2e. 8 pages. The title was changed from "Asymptotic Attainment for Quantum Relative Entropy

    Kinematic approach to the mixed state geometric phase in nonunitary evolution

    Full text link
    A kinematic approach to the geometric phase for mixed quantal states in nonunitary evolution is proposed. This phase is manifestly gauge invariant and can be experimentally tested in interferometry. It leads to well-known results when the evolution is unitary.Comment: Minor changes; journal reference adde

    Quantum thermodynamics with missing reference frames: Decompositions of free energy into non-increasing components

    Full text link
    If an absolute reference frame with respect to time, position, or orientation is missing one can only implement quantum operations which are covariant with respect to the corresponding unitary symmetry group G. Extending observations of Vaccaro et al., I argue that the free energy of a quantum system with G-invariant Hamiltonian then splits up into the Holevo information of the orbit of the state under the action of G and the free energy of its orbit average. These two kinds of free energy cannot be converted into each other. The first component is subadditive and the second superadditive; in the limit of infinitely many copies only the usual free energy matters. Refined splittings of free energy into more than two independent (non-increasing) terms can be defined by averaging over probability measures on G that differ from the Haar measure. Even in the presence of a reference frame, these results provide lower bounds on the amount of free energy that is lost after applying a covariant channel. If the channel properly decreases one of these quantities, it decreases the free energy necessarily at least by the same amount, since it is unable to convert the different forms of free energies into each other.Comment: 17 pages, latex, 1 figur

    The Potential-Density Phase Shift Method for Determining the Corotation Radii in Spiral and Barred Galaxies

    Get PDF
    We have developed a new method for determining the corotation radii of density waves in disk galaxies, which makes use of the radial distribution of an azimuthal phase shift between the potential and density wave patterns. The approach originated from improved theoretical understandings of the relation between the morphology and kinematics of galaxies, and on the dynamical interaction between density waves and the basic-state disk stars which results in the secular evolution of disk galaxies. In this paper, we present the rationales behind the method, and the first application of it to several representative barred and grand-design spiral galaxies, using near-infrared images to trace the mass distributions, as well as to calculate the potential distributions used in the phase shift calculations. We compare our results with those from other existing methods for locating the corotations, and show that the new method both confirms the previously-established trends of bar-length dependence on galaxy morphological types, as well as provides new insights into the possible extent of bars in disk galaxies. Application of the method to a larger sample and the preliminary analysis of which show that the phase shift method is likely to be a generally-applicable, accurate, and essentially model-independent method for determining the pattern speeds and corotation radii of single or nested density wave patterns in galaxies. Other implications of this work are: most of the nearby bright disk galaxies appear to possess quasi-stationary spiral modes; that these density wave modes and the associated basic state of the galactic disk slowly transform over time; and that self-consistent N-particle systems contain physics not revealed by the passive orbit analysis approaches.Comment: 48 pages, 16 figures. Accepted for publication in the Astronomical Journa

    Quantum ratchets in dissipative chaotic systems

    Full text link
    Using the method of quantum trajectories we study a quantum chaotic dissipative ratchet appearing for particles in a pulsed asymmetric potential in the presence of a dissipative environment. The system is characterized by directed transport emerging from a quantum strange attractor. This model exhibits, in the limit of small effective Planck constant, a transition from quantum to classical behavior, in agreement with the correspondence principle. We also discuss parameter values suitable for implementation of the quantum ratchet effect with cold atoms in optical lattices.Comment: Significant changes: Several text improvements and new results. Figure 2 modified. Figure 4 adde

    Generalized and weighted Strichartz estimates

    Full text link
    In this paper, we explore the relations between different kinds of Strichartz estimates and give new estimates in Euclidean space Rn\mathbb{R}^n. In particular, we prove the generalized and weighted Strichartz estimates for a large class of dispersive operators including the Schr\"odinger and wave equation. As a sample application of these new estimates, we are able to prove the Strauss conjecture with low regularity for dimension 2 and 3.Comment: Final version, to appear in the Communications on Pure and Applied Analysis. 33 pages. 2 more references adde

    Decoherence due to contacts in ballistic nanostructures

    Full text link
    The active region of a ballistic nanostructure is an open quantum-mechanical system, whose nonunitary evolution (decoherence) towards a nonequilibrium steady state is determined by carrier injection from the contacts. The purpose of this paper is to provide a simple theoretical description of the contact-induced decoherence in ballistic nanostructures, which is established within the framework of the open systems theory. The active region's evolution in the presence of contacts is generally non-Markovian. However, if the contacts' energy relaxation due to electron-electron scattering is sufficiently fast, then the contacts can be considered memoryless on timescales coarsened over their energy relaxation time, and the evolution of the current-limiting active region can be considered Markovian. Therefore, we first derive a general Markovian map in the presence of a memoryless environment, by coarse-graining the exact short-time non-Markovian dynamics of an abstract open system over the environment memory-loss time, and we give the requirements for the validity of this map. We then introduce a model contact-active region interaction that describes carrier injection from the contacts for a generic two-terminal ballistic nanostructure. Starting from this model interaction and using the Markovian dynamics derived by coarse-graining over the effective memory-loss time of the contacts, we derive the formulas for the nonequilibrium steady-state distribution functions of the forward and backward propagating states in the nanostructure's active region. On the example of a double-barrier tunneling structure, the present approach yields an I-V curve with all the prominent resonant features. The relationship to the Landauer-B\"{u}ttiker formalism is also discussed, as well as the inclusion of scattering.Comment: Published versio

    Qubit quantum channels: A characteristic function approach

    Full text link
    A characterization of qubit quantum channels is introduced. In analogy to what happens in the context of Bosonic channels we exploit the possibility of representing the states of the system in terms of characteristic function. The latter are functions of non-commuting variables (Grassmann variables) and are defined in terms of generalized displacement operators. In this context we introduce the set of Gaussian channels and show that they share similar properties with the corresponding Bosonic counterpart.Comment: 10 pages (minor editing

    Optimal Control of Quantum Dissipative Dynamics: Analytic solution for cooling the three level Λ\Lambda system

    Full text link
    We study the problem of optimal control of dissipative quantum dynamics. Although under most circumstances dissipation leads to an increase in entropy (or a decrease in purity) of the system, there is an important class of problems for which dissipation with external control can decrease the entropy (or increase the purity) of the system. An important example is laser cooling. In such systems, there is an interplay of the Hamiltonian part of the dynamics, which is controllable and the dissipative part of the dynamics, which is uncontrollable. The strategy is to control the Hamiltonian portion of the evolution in such a way that the dissipation causes the purity of the system to increase rather than decrease. The goal of this paper is to find the strategy that leads to maximal purity at the final time. Under the assumption that Hamiltonian control is complete and arbitrarily fast, we provide a general framework by which to calculate optimal cooling strategies. These assumptions lead to a great simplification, in which the control problem can be reformulated in terms of the spectrum of eigenvalues of ρ\rho, rather than ρ\rho itself. By combining this formulation with the Hamilton-Jacobi-Bellman theorem we are able to obtain an equation for the globaly optimal cooling strategy in terms of the spectrum of the density matrix. For the three-level Λ\Lambda system, we provide a complete analytic solution for the optimal cooling strategy. For this system it is found that the optimal strategy does not exploit system coherences and is a 'greedy' strategy, in which the purity is increased maximally at each instant.Comment: 9 pages, 3 fig
    corecore