355 research outputs found

    The Explosive Yields Produced by the First Generation of Core Collapse Supernovae and the Chemical Composition of Extremely Metal Poor Stars

    Get PDF
    We present a detailed comparison between an extended set of elemental abundances observed in some of the most metal poor stars presently known and the ejecta produced by a generation of primordial core collapse supernovae. We used five stars which form our initial database and define a "template" ultra metal poor star which is then compared to the theoretical predictions. Our main findings are as follows: a) the fit to [Si/Mg] and [Ca/Mg] of these very metal poor stars seems to favor the presence of a rather large C abundance at the end of the central He burning; in a classical scenario in which the border of the convective core is strictly determined by the Schwarzschild criterion, such a large C abundance would imply a rather low C12(alpha,gamma)O16 reaction rate; b) a low C abundance left by the central He burning would imply a low [Al/Mg] (<-1.2 dex) independently on the initial mass of the exploding star while a rather large C abundance would produce such a low [Al/Mg] only for the most massive stellar model; c) at variance with current beliefs that it is difficult to interpret the observed overabundance of [Co/Fe], we find that a mildly large C abundance in the He exhausted core (well within the present range of uncertainty) easily and naturally allows a very good fit to [Co/Fe]; d) our yields allow a reasonable fit to 8 out of the 11 available elemental abundances; e) within the present grid of models it is not possible to find a good match of the remaining three elements, Ti, Cr and Ni (even for an arbitrary choice of the mass cut); f) the adoption of other yields available in the literature does not improve the fit; g) since no mass in our grid provides a satisfactory fit to these three elements, even an arbitrary choice of the initial mass function would not improve their fit.Comment: 30 pages, 8 figures, 8 tables. Accepted for publication on Ap

    Pre-suprenova evolution of rotating massive stars

    Full text link
    The Geneva evolutionary code has been modified to study the advanced stages (Ne, O, Si burnings) of rotating massive stars. Here we present the results of four 20 solar mass stars at solar metallicity with initial rotational velocities of 0, 100, 200 and 300 km/s in order to show the crucial role of rotation in stellar evolution. As already known, rotation increases mass loss and core masses (Meynet and Maeder 2000). A fast rotating 20 solar mass star has the same central evolution as a non-rotating 26 solar mass star. Rotation also increases strongly net total metal yields. Furthermore, rotation changes the SN type so that more SNIb are predicted (see Meynet and Maeder 2003 and N. Prantzos and S. Boissier 2003). Finally, SN1987A-like supernovae progenitor colour can be explained in a single rotating star scenario.Comment: To appear in proceedings of IAU Colloquium 192, "Supernovae (10 years of 1993J)", Valencia, Spain 22-26 April 2003, eds. J.M. Marcaide, K.W. Weiler, 5 pages, 8 figure

    Role of glutathionylation in infection and inflammation

    Get PDF
    Glutathionylation, that is, the formation of mixed disulfides between protein cysteines and glutathione (GSH) cysteines, is a reversible post-translational modification catalyzed by dierent cellular oxidoreductases, by which the redox state of the cell modulates protein function. So far, most studies on the identification of glutathionylated proteins have focused on cellular proteins, including proteins involved in host response to infection, but there is a growing number of reports showing that microbial proteins also undergo glutathionylation, with modification of their characteristics and functions. In the present review, we highlight the signaling role of GSH through glutathionylation, particularly focusing on microbial (viral and bacterial) glutathionylated proteins (GSSPs) and host GSSPs involved in the immune/inflammatory response to infection; moreover, we discuss the biological role of the process in microbial infections and related host responses

    Evolution and nucleosynthesis of primordial low mass stars

    Get PDF
    We discuss in detail the evolutionary properties of low mass stars M< 1 M(Solar) having metallicity lower than Z=10^(-6) from the pre- main sequence up to (almost) the end of the Asymptotic Giant Branch phase. We also discuss the possibility that the large [C,N/Fe] observed on the surface of the most Iron poor star presently known, HE0107-5240, may be attributed to the autopollution induced by the penetration of the He convective shell into the H rich mantle during the He core flash of a low mass, very low metallicity star. On the basis of a quite detailed analysis, we conclude that the autopollution scenario cannot be responsible for the observed chemical composition of HE0107-5240

    New Stationary Frame Control Scheme for Three Phase PWM Rectifiers Under Unbalanced Voltage Dips Conditions

    Get PDF
    A new stationary frame control scheme for three-phase pulsewidth-modulation (PWM) rectifiers operating under unbalanced voltage dips conditions is proposed in this paper. The proposed control scheme regulates the instantaneous active power at the converter poles to minimize the harmonics of the input currents and the output voltage ripple. This paper's novelty is the development of a new current-reference generator implemented directly in stationary reference frame. This allows using proportional sinusoidal signal integrator (P-SSI) controllers for simultaneous compensation of both positive and negative current sequence components. No phase-locked loop (PLL) strategies and coordinate transformations are needed for the proposed current-reference generator. Experimental results are presented for a 20-kV A alternative current (ac)/direct current (dc) converter prototype to demonstrate the effectiveness of the proposed control scheme. A comparison with two other existing control techniques is also performed. Fast dynamic performance with small dc-link voltage ripple and input sinusoidal currents are obtained with this control scheme, even under severe voltage dips operating conditions

    On the Origin of the Early Solar System Radioactivities. Problems with the AGB and Massive Star Scenarios

    Get PDF
    Recent improvements in stellar models for intermediate-mass and massive stars are recalled, together with their expectations for the synthesis of radioactive nuclei of lifetime τ≲25\tau \lesssim 25 Myr, in order to re-examine the origins of now extinct radioactivities, which were alive in the solar nebula. The Galactic inheritance broadly explains most of them, especially if rr-process nuclei are produced by neutron star merging according to recent models. Instead, 26^{26}Al, 41^{41}Ca, 135^{135}Cs and possibly 60^{60}Fe require nucleosynthesis events close to the solar formation. We outline the persisting difficulties to account for these nuclei by Intermediate Mass Stars (2 ≲\lesssim M/M⊙≲7−8_\odot \lesssim 7 - 8). Models of their final stages now predict the ubiquitous formation of a 13^{13}C reservoir as a neutron capture source; hence, even in presence of 26^{26}Al production from Deep Mixing or Hot Bottom Burning, the ratio 26^{26}Al/107^{107}Pd remains incompatible with measured data, with a large excess in 107^{107}Pd. This is shown for two recent approaches to Deep Mixing. Even a late contamination by a Massive Star meets problems. In fact, inhomogeneous addition of Supernova debris predicts non-measured excesses on stable isotopes. Revisions invoking specific low-mass supernovae and/or the sequential contamination of the pre-solar molecular cloud might be affected by similar problems, although our conclusions here are weakened by our schematic approach to the addition of SN ejecta. The limited parameter space remaining to be explored for solving this puzzle is discussed.Comment: Accepted for publication on Ap

    The Chemical Evolution of Magnesium Isotopic Abundances in the Solar Neighbourhood

    Full text link
    The abundance of the neutron-rich magnesium isotopes observed in metal-poor stars is explained quantitatively with a chemical evolution model of the local Galaxy that considers - for the first time - the metallicity-dependent contribution from intermediate mass stars. Previous models that simulate the variation of Mg isotopic ratios with metallicity in the solar neighbourhood have attributed the production of Mg25 and Mg26 exclusively to hydrostatic burning in massive stars. These models match the data well for [Fe/H]>-1.0 but severely underestimate Mg25/Mg24 and Mg26/Mg24 at lower metallicities. Earlier studies have noted that this discrepancy may indicate a significant role played by intermediate-mass stars. Only recently have detailed calculations of intermediate-mass stellar yields of Mg25 and Mg26 become available with which to test this hypothesis. In an extension of previous work, we present a model that successfully matches the Mg isotopic abundances in nearby Galactic disk stars through the incorporation of nucleosynthesis predictions of Mg isotopic production in asymptotic giant branch stars.Comment: 9 pages, 6 figures, to appear in Publications of the Astronomical Society of Australia (PASA) in 2003, vol. 20, No.

    C/O white dwarfs of very low mass: 0.33-0.5 Mo

    Full text link
    The standard lower limit for the mass of white dwarfs (WDs) with a C/O core is roughly 0.5 Mo. In the present work we investigated the possibility to form C/O WDs with mass as low as 0.33 Mo. Both the pre-WD and the cooling evolution of such nonstandard models will be described.Comment: Submitted to the "Proceedings of the 16th European White Dwarf Workshop" (to be published JPCS). 7 pages including 13 figure

    Progressive changes in descriptive discourse in First Episode Schizophrenia: a longitudinal computational semantics study

    Get PDF
    Computational semantics, a branch of computational linguistics, involves automated meaning analysis that relies on how words occur together in natural language. This offers a promising tool to study schizophrenia. At present, we do not know if these word-level choices in speech are sensitive to the illness stage (i.e., acute untreated vs. stable established state), track cognitive deficits in major domains (e.g., cognitive control, processing speed) or relate to established dimensions of formal thought disorder. In this study, we collected samples of descriptive discourse in patients experiencing an untreated first episode of schizophrenia and healthy control subjects (246 samples of 1-minute speech; n = 82, FES = 46, HC = 36) and used a co-occurrence based vector embedding of words to quantify semantic similarity in speech. We obtained six-month follow-up data in a subsample (99 speech samples, n = 33, FES = 20, HC = 13). At baseline, semantic similarity was evidently higher in patients compared to healthy individuals, especially when social functioning was impaired; but this was not related to the severity of clinically ascertained thought disorder in patients. Across the study sample, higher semantic similarity at baseline was related to poorer Stroop performance and processing speed. Over time, while semantic similarity was stable in healthy subjects, it increased in patients, especially when they had an increasing burden of negative symptoms. Disruptions in word-level choices made by patients with schizophrenia during short 1-min descriptions are sensitive to interindividual differences in cognitive and social functioning at first presentation and persist over the early course of the illness

    Evolved stars in the Local Group galaxies - II. AGB, RSG stars and dust production in IC10

    Get PDF
    We study the evolved stellar population of the Local Group galaxy IC10, with the aim of characterizing the individual sources observed and to derive global information on the galaxy, primarily the star formation history and the dust production rate. To this aim, we use evolutionary sequences of low- and intermediate-mass (M<8 M⊙M < 8~M_{\odot}) stars, evolved through the asymptotic giant branch phase, with the inclusion of the description of dust formation. We also use models of higher mass stars. From the analysis of the distribution of stars in the observational planes obtained with IR bands, we find that the reddening and distance of IC10 are E(B−V)=1.85E(B-V)=1.85 mag and d=0.77d=0.77 Mpc, respectively. The evolved stellar population is dominated by carbon stars, that account for 40%40\% of the sources brighter than the tip of the red giant branch. Most of these stars descend from ∼1.1−1.3 M⊙\sim 1.1-1.3~M_{\odot} progenitors, formed during the major epoch of star formation, which occurred ∼2.5\sim 2.5 Gyr ago. The presence of a significant number of bright stars indicates that IC10 has been site of significant star formation in recent epochs and currently hosts a group of massive stars in the core helium-burning phase. Dust production in this galaxy is largely dominated by carbon stars; the overall dust production rate estimated is 7×10−6 M⊙7\times 10^{-6}~M_{\odot}/yr.Comment: Manuscript accepted for publication in MNRAS on 11 june 2018;17 pages, 10 figure
    • …
    corecore