15,848 research outputs found
A Sphere-Scanning Radiometer for Rapid Directional Measurements of Sky and Ground Radiance: the PARABOLA Field Instrument
A unique field instrument, called the PARABOLA, a collapsable support boom, which is self contained and easily transportable to remote sites to enable the acquisition of radiance data for almost the complete (4 pi) sky and ground-looking hemispheres in only 11 seconds was designed. The PARABOLA samples in 15 deg instantaneous field of view sectors in three narrow bandpass spectral channels simultaneously. Field measurement on a variety of earth surface cover types using a truck boom, a specially designed pickup truck mounting system, and a hot air balloon were studied. The PARABOLA instrument has potential for climatological and other studies which require characterization of the distribution of diffuse solar radiation within the sky hemisphere
The radio lighthouse CU Virginis: the spindown of a single main sequence star
The fast rotating star CU Virginis is a magnetic chemically peculiar star
with an oblique dipolar magnetic field. The continuum radio emission has been
interpreted as gyrosyncrotron emission arising from a thin magnetospheric
layer. Previous radio observations at 1.4 GHz showed that a 100% circular
polarized and highly directive emission component overlaps to the continuum
emission two times per rotation, when the magnetic axis lies in the plane of
the sky. This sort of radio lighthouse has been proposed to be due to cyclotron
maser emission generated above the magnetic pole and propagating
perpendicularly to the magnetic axis. Observations carried out with the
Australia Telescope Compact Array at 1.4 and 2.5 GHz one year after this
discovery show that this radio emission is still present, meaning that the
phenomenon responsible for this process is steady on a timescale of years. The
emitted radiation spans at least 1 GHz, being observed from 1.4 to 2.5 GHz. On
the light of recent results on the physics of the magnetosphere of this star,
the possibility of plasma radiation is ruled out. The characteristics of this
radio lighthouse provides us a good marker of the rotation period, since the
peaks are visible at particular rotational phases. After one year, they show a
delay of about 15 minutes. This is interpreted as a new abrupt spinning down of
the star. Among several possibilities, a quick emptying of the equatorial
magnetic belt after reaching the maximum density can account for the magnitude
of the breaking. The study of the coherent emission in stars like CU Vir, as
well as in pre main sequence stars, can give important insight into the angular
momentum evolution in young stars. This is a promising field of investigation
that high sensitivity radio interferometers such as SKA can exploit.Comment: Accepted to MNRAS, 8 pages, 7 figures, updated versio
Polarization and angular distribution of the radiation emitted in laser-assisted recombination
The effect of an intense external linear polarized radiation field on the
angular distributions and polarization states of the photons emitted during the
radiative recombination is investigated. It is predicted, on symmetry grounds,
and corroborated by numerical calculations of approximate recombination rates,
that emission of elliptically polarized photons occurs when the momentum of the
electron beam is not aligned to the direction of the oscillating field.
Moreover, strong modifications to the angular distributions of the emitted
photons are induced by the external radiation field.Comment: 5 pages, 3 figure
Comorbid depressive disorders in ADHD. the role of ADHD severity, subtypes and familial psychiatric disorders
ObjectiveaaTo evaluate the presence of Major Depressive Disorder (MDD) and Dysthymic Disorder (DD) in a sample of Italian children with Attention Deficit Hyperactivity Disorder (ADHD) and to explore specific features of comorbid depressive disorders in ADHD. MethodsaaThree hundred and sixty-six consecutive, drug-naïve Caucasian Italian outpatients with ADHD were recruited and comorbid disorders were evaluated using DSM-IV-TR criteria. To evaluate ADHD severity, parents of all children filled out the ADHD Rating Scale. Thirty-seven children with comorbid MDD or DD were compared with 118 children with comorbid conduct disorder and 122 without comorbidity for age, sex, IQ level, family psychiatric history, and ADHD subtypes and severity. Resultsaa42 of the ADHD children displayed comorbid depressive disorders: 16 exhibited MDD, 21 DD, and 5 both MDD and DD. The frequency of hyperactive-impulsive subtypes was significantly lower in ADHD children with depressive disorders, than in those without any comorbidity. ADHD children with depressive disorders showed a higher number of familial psychiatric disorders and higher score in the Inattentive scale of the ADHD Rating Scale, than children without any comorbidity. No differences were found for age, sex and IQ level between the three groups. Conclusions: Consistent with previous studies in other countries, depressive disorders affect a significant proportion of ADHD children in Italy. Patient assessment and subsequent treatment should take into consideration the possible presence of this comorbidity, which could specifically increase the severity of ADHD attention problems
Efficient table-top dual-wavelength beamline for ultrafast transient absorption spectroscopy in the soft X-ray region.
We present a table-top beamline providing a soft X-ray supercontinuum extending up to 370 eV from high-order harmonic generation with sub-13 fs 1300 nm driving pulses and simultaneous production of sub-5 fs pulses centered at 800 nm. Optimization of high harmonic generation in a long and dense gas medium yields a photon flux of ~ 1.4 × 106 photons/s/1% bandwidth at 300 eV. The temporal resolution of X-ray transient absorption experiments with this beamline is measured to be 11 fs for 800 nm excitation. This dual-wavelength approach, combined with high flux and high spectral and temporal resolution soft X-ray absorption spectroscopy, is a new route to the study of ultrafast electronic dynamics in carbon-containing molecules and materials at the carbon K-edge
Extreme Kuiper Belt Object 2001 QG298 and the Fraction of Contact Binaries
Extensive time-resolved observations of Kuiper Belt object 2001 QG298 show a
lightcurve with a peak-to-peak variation of 1.14 +-0.04 magnitudes and
single-peaked period of 6.8872 +- 0.0002 hr. The mean absolute magnitude is
6.85 magnitudes which corresponds to a mean effective radius of 122 (77) km if
an albedo of 0.04 (0.10) is assumed. This is the first known Kuiper Belt object
and only the third minor planet with a radius > 25 km to display a lightcurve
with a range in excess of 1 magnitude. We find the colors to be typical for a
Kuiper Belt object (B-V = 1.00 +- 0.04, V-R = 0.60 +- 0.02) with no variation
in color between minimum and maximum light. The large light variation,
relatively long double-peaked period and absence of rotational color change
argue against explanations due to albedo markings or elongation due to high
angular momentum. Instead, we suggest that 2001 QG298 may be a very close or
contact binary similar in structure to what has been independently proposed for
the Trojan asteroid 624 Hektor. If so, its rotational period would be twice the
lightcurve period or 13.7744 +- 0.0004 hr. By correcting for the effects of
projection, we estimate that the fraction of similar objects in the Kuiper Belt
is at least 10% to 20% with the true fraction probably much higher. A high
abundance of close and contact binaries is expected in some scenarios for the
evolution of binary Kuiper Belt objects.Comment: 15 text pages,6 figures(Color),5 Tables, Accepted to AJ for May 200
Implementation of a Matrix Crack Spacing Parameter in a Continuum Damage Mechanics Finite Element Model
Continuum Damage Mechanics (CDM) based progressive damage and failure analysis (PDFA) methods have demonstrated success in a variety of finite element analysis (FEA) implementations. However, the technical maturity of CDM codes has not yet been proven for the full design space of composite materials in aerospace applications. CDM-based approaches represent the presence of damage by changing the local material stiffness definitions and without updating the original mesh or element integration schemes. Without discretely representing cracks and their paths through the mesh, damage in models with CDM-based materials is often distributed in a region of partially damaged elements ahead of stress concentrations. Having a series of discrete matrix cracks represented by a softened region may affect predictions of damage propagation and, thus, structural failure. This issue can be mitigated by restricting matrix damage development to discrete, fiber-aligned rows of elements; hence CDM-based matrix cracks can be implemented to be more representative of discrete matrix cracks. This paper evaluates the effect of restricting CDM matrix crack development to discrete, fiber-aligned rows where the spacing of these rows is controlled by a user-defined crack spacing parameter. Initially, the effect of incrementally increasing matrix crack spacing in a unidirectional center notch coupon is evaluated. Then, the lessons learned from the center notch specimen are applied to open-hole compression finite element models. Results are compared to test data, and the limitations, successes, and potential of the matrix crack spacing approach are discussed
Homogeneous and inhomogeneous contributions to the luminescence linewidth of point defects in amorphous solids: Quantitative assessment based on time-resolved emission spectroscopy
The article describes an experimental method that allows to estimate the
inhomogeneous and homogeneous linewidths of the photoluminescence band of a
point defect in an amorphous solid. We performed low temperature time-resolved
luminescence measurements on two defects chosen as model systems for our
analysis: extrinsic Oxygen Deficient Centers (ODC(II)) in amorphous silica and
F+ 3 centers in crystalline Lithium Fluoride. Measurements evidence that only
defects embedded in the amorphous matrix feature a dependence of the radiative
decay lifetime on the emission energy and a time dependence of the first moment
of the emission band. A theoretical model is developed to link these properties
to the structural disorder typical of amorphous solids. Specifically, the
observations on ODC(II) are interpreted by introducing a gaussian statistical
distribution of the zero phonon line energy position. Comparison with the
results obtained on F+ 3 crystalline defects strongly confirms the validity of
the model. By analyzing experimental data within this frame, we obtain separate
estimations of the homogenous and inhomogeneous contributions to the measured
total linewidth of ODC(II), which results to be mostly inhomogeneous.Comment: 8 pages, 4 figure
Bell inequality violation by entangled single photon states generated from a laser, a LED or a Halogen lamp
In single-particle or intraparticle entanglement, two degrees of freedom of a
single particle, e.g., momentum and polarization of a single photon, are
entangled. Single-particle entanglement (SPE) provides a source of non
classical correlations which can be exploited both in quantum communication
protocols and in experimental tests of noncontextuality based on the
Kochen-Specker theorem. Furthermore, SPE is robust under decoherence phenomena.
Here, we show that single-particle entangled states of single photons can be
produced from attenuated sources of light, even classical ones. To
experimentally certify the entanglement, we perform a Bell test, observing a
violation of the Clauser, Horne, Shimony and Holt (CHSH) inequality. On the one
hand, we show that this entanglement can be achieved even in a classical light
beam, provided that first-order coherence is maintained between the degrees of
freedom involved in the entanglement. On the other hand, we prove that filtered
and attenuated light sources provide a flux of independent SPE photons that,
from a statistical point of view, are indistinguishable from those generated by
a single photon source. This has important consequences, since it demonstrates
that cheap, compact, and low power entangled photon sources can be used for a
range of quantum technology applications
Guest editors’ preface to the special issue devoted to the 2nd International Conference “Numerical Computations: Theory and Algorithms”, June 19–25, 2016, Pizzo Calabro, Italy
This special issue of the Journal of Global Optimization contains twelve high-quality research papers devoted to different aspects of global optimization such as theory, numerical methods and real-life applications. The papers included in this special issue are based on the presentations carefully selected by the guest editors among the talks delivered at the 2nd International Conference “Numerical Computations: Theory and Algorithms (NUMTA)” held in June 19–25, 2016 in Pizzo Calabro, Italy (the first NUMTA conference took place in Falerna, Italy in 2013). The NUMTA 2016 has been organized by the University of Calabria, Rende (CS), Italy, in cooperation with the Society for Industrial and Applied Mathematics, USA. The guest editors actively participated in the organization of the conference: the Program Committee of the NUMTA 2016 was chaired by Yaroslav D. Sergeyev, in their turn, Renato De Leone and Anatoly Zhigljavsky took part in the Program Committee.
The goal of the NUMTA 2016 was creation of a multidisciplinary round table for an open discussion on numerical modeling nature by using traditional and emerging computational paradigms. Participants of this conference discussed several aspects of numerical computations and modeling from foundations of mathematics and computer science to advanced numerical techniques. A large part of presentations has been dedicated to optimization. Selected papers presented at the conference in the field of numerical analysis and respective applications have been published in the special issue of the international journal Applied Mathematics and Computation, Volume 318 (2018). In its turn, the present special issue contains articles dealing with global optimization. Let us give a brief description of the papers included in this special issue
- …
