384 research outputs found

    Sub-micrometre holotomographic characterisation of the effects of solution heat treatment on an AlMg7.3Si3.5 alloy

    Get PDF
    A strip cast AlMg7.3Si3.5 alloy is investigated by sub-micrometre holotomographic analysis achieving a voxel size of (60 nm)(3) by cone beam magnification of the focused synchrotron beam using Kirkpatrick-Baez mirrors. The three-dimensional microstructure of the same specimen volume in the as-cast state is compared with that after exposure to 540 degrees C for 30 min resolving microstructural features down to 180 nm. The three-dimensional analysis of the architecture of the eutectic Mg2Si and the Fe-aluminides reveals how the as-cast microstructure changes during the solution treatment. The alloy in the as-cast condition contains a highly interconnected seaweed-like Mg2Si eutectic. The level of three-dimensional interconnectivity of the Mg2Si eutectic phase decreases by only partial disintegration during the heat treatment correcting the two-dimensional metallographic impression of isolated round particles. Statistical analyses of the particle distribution, sphericity, mean curvatures and Gaussian curvatures describe quantitatively the architectural changes of the Mg2Si phase. This explains the decrease of the high temperature strength of the alloy by the solution treatment tested in hot compression. (C) 2012 Elsevier B.V. All rights reserved

    Effect of solution heat treatment on the internal architecture and compressive strength of an AlMg4.7Si8 alloy

    Get PDF
    The evolution of the microstructure of an AlMg4.7Si8 alloy is investigated by scanning electron microscopy and ex situ synchrotron tomography in as-cast condition and subsequent solution treatments for 1 h and 25 h at 540 °C, respectively. The eutectic Mg2Si phase, which presents a highly interconnected structure in the as-cast condition, undergoes significant morphological changes during the solution heat treatment. Statistical analyses of the particle distribution, the sphericity, the mean curvatures and Gaussian curvatures describe the disintegration of the interconnected seaweed-like structure followed by the rounding of the disintegrated fractions of the eutectic branches quantitatively. The ternary eutectic Si resulting from the Si-surplus to the stoichiometric Mg2Si ratio of the alloy undergoes similar changes. The morphological evolution during solution heat treatment is correlated with results of elevated temperature compression tests at 300 °C. The elevated temperature compressive strength is more sensitive to the degree of interconnectivity of the three dimensional Mg2Si network than to the shape of the individual particles. © 2013 Elsevier B.V. All rights reserved

    Veracity Computing from Lexical Cues and Perceived Certainty Trends

    Get PDF
    We present a data-driven method for determining the veracity of a set of rumorous claims on social media data. Tweets from different sources pertaining to a rumor are processed on three levels: first, factuality values are assigned to each tweet based on four textual cue categories relevant for our journalism use case; these amalgamate speaker support in terms of polarity and commitment in terms of certainty and speculation. Next, the proportions of these lexical cues are utilized as predictors for tweet certainty in a generalized linear regression model. Subsequently, lexical cue proportions, predicted certainty, as well as their time course characteristics are used to compute veracity for each rumor in terms of the identity of the rumor-resolving tweet and its binary resolution value judgment. The system operates without access to extralinguistic resources. Evaluated on the data portion for which hand-labeled examples were available, it achieves .74 F1-score on identifying rumor resolving tweets and .76 F1-score on predicting if a rumor is resolved as true or false.Comment: to appear in: Proc. 2nd Workshop on Noisy User-generated Text, Osaka, Japan, 201

    Contradiction Detection for Rumorous Claims

    Get PDF
    The utilization of social media material in journalistic workflows is increasing, demanding automated methods for the identification of mis- and disinformation. Since textual contradiction across social media posts can be a signal of rumorousness, we seek to model how claims in Twitter posts are being textually contradicted. We identify two different contexts in which contradiction emerges: its broader form can be observed across independently posted tweets and its more specific form in threaded conversations. We define how the two scenarios differ in terms of central elements of argumentation: claims and conversation structure. We design and evaluate models for the two scenarios uniformly as 3-way Recognizing Textual Entailment tasks in order to represent claims and conversation structure implicitly in a generic inference model, while previous studies used explicit or no representation of these properties. To address noisy text, our classifiers use simple similarity features derived from the string and part-of-speech level. Corpus statistics reveal distribution differences for these features in contradictory as opposed to non-contradictory tweet relations, and the classifiers yield state of the art performance.Comment: To appear in: Proceedings of Extra-Propositional Aspects of Meaning (ExProM) in Computational Linguistics, Osaka, Japan, 201

    In vivo imaging of pyrrole-imidazole polyamides with positron emission tomography

    Get PDF
    The biodistribution profiles in mice of two pyrrole-imidazole polyamides were determined by PET. Pyrrole-imidazole polyamides are a class of small molecules that can be programmed to bind a broad repertoire of DNA sequences, disrupt transcription factor-DNA interfaces, and modulate gene expression pathways in cell culture experiments. The 18F-radiolabeled polyamides were prepared by oxime ligation between 4-[18F]-fluorobenzaldehyde and a hydroxylamine moiety at the polyamide C terminus. Small animal PET imaging of radiolabeled polyamides administered to mice revealed distinct differences in the biodistribution of a 5-ring β-linked polyamide versus an 8-ring hairpin, which exhibited better overall bioavailability. In vivo imaging of pyrrole-imidazole polyamides by PET is a minimum first step toward the translation of polyamide-based gene regulation from cell culture to small animal studies

    High-volume lesions using a new second-generation open irrigation radiofrequency catheter are associated with the development of inhomogeneous lesions

    Get PDF
    BACKGROUND: After catheter ablation there is often a discrepancy between acute and chronic success rates. We aimed to evaluate major determinants for lesion quality and understand different manifestations of lesion structures. METHODS: In a canine thigh muscle model radiofrequency (RF) current was delivered for 60 seconds at 30 W (n = 39) or 50 W (n = 18) with 15-g contact force. A second-generation 12-hole gold open irrigation catheter (SGIT) and a first-generation six-hole platinum-iridium catheter (FGIT; Biotronik, Berlin, Germany) were used. Electrode and tissue temperatures (at the surface and 3.5-mm and 7-mm depth) were recorded and lesion dimensions were measured. Lesions with steam pops were excluded. Histological examination was performed to evaluate homogeneity of the lesions. Inhomogeneity was defined as a visual multiband lesion pattern indicating different histological characteristics. RESULTS: In total 57 lesions were created. Seventeen lesions were excluded (steam pops) and 40 lesions were analyzed. A total number of 11 homogeneous and 29 inhomogeneous lesions were identified. Using the SGIT catheter 16.7% of the lesions was homogeneous and 83.3% inhomogeneous; for FGIT it was 43.8% and 56.2% (P = 0.065), respectively. Homogeneous lesions had lower volumes as compared to inhomogeneous lesions (514.0 +/- 198.8 vs 914.8 +/- 399.1 mm, P = 0.003). Multiple logistic regression analysis indicated that the SGIT catheter is a significant predictor for inhomogeneous lesions (odds ratio 6.5, 95% confidence interval 1.1-38.8; P = 0.040) independent from power setting and flow rate. CONCLUSIONS: The development of inhomogeneous lesions after acute RF ablation is associated with higher lesion volumes and the use of the second-generation irrigation gold-tip catheter

    Fundamentals of interface phenomena in advanced bulk nanoscale materials

    Get PDF
    The review is devoted to a study of interface phenomena influencing advanced properties of nanoscale materials processed by means of severe plastic deformation, high-energy ball milling and their combinations. Interface phenomena include processes of interface defect structure relaxation from a highly nonequilibrium state to an equilibrium condition, grain boundary phase transformations and enhanced grain boundary and triple junction diffusivity. On the basis of an experimental investigation, a theoretical description of the key interfacial phenomena controlling the functional properties of advanced bulk nanoscale materials has been conducted. An interface defect structure investigation has been performed by TEM, high-resolution x-ray diffraction, atomic simulation and modeling. The problem of a transition from highly non-equilibrium state to an equilibrium one, which seems to be responsible for low thermostability of nanoscale materials, was studied. Also enhanced grain boundary diffusivity is addressed. Structure recovery and dislocation emission from grain boundaries in nanocrystalline materials have been investigated by analytical methods and modeling

    Muon and Cosmogenic Neutron Detection in Borexino

    Full text link
    Borexino, a liquid scintillator detector at LNGS, is designed for the detection of neutrinos and antineutrinos from the Sun, supernovae, nuclear reactors, and the Earth. The feeble nature of these signals requires a strong suppression of backgrounds below a few MeV. Very low intrinsic radiogenic contamination of all detector components needs to be accompanied by the efficient identification of muons and of muon-induced backgrounds. Muons produce unstable nuclei by spallation processes along their trajectory through the detector whose decays can mimic the expected signals; for isotopes with half-lives longer than a few seconds, the dead time induced by a muon-related veto becomes unacceptably long, unless its application can be restricted to a sub-volume along the muon track. Consequently, not only the identification of muons with very high efficiency but also a precise reconstruction of their tracks is of primary importance for the physics program of the experiment. The Borexino inner detector is surrounded by an outer water-Cherenkov detector that plays a fundamental role in accomplishing this task. The detector design principles and their implementation are described. The strategies adopted to identify muons are reviewed and their efficiency is evaluated. The overall muon veto efficiency is found to be 99.992% or better. Ad-hoc track reconstruction algorithms developed are presented. Their performance is tested against muon events of known direction such as those from the CNGS neutrino beam, test tracks available from a dedicated External Muon Tracker and cosmic muons whose angular distribution reflects the local overburden profile. The achieved angular resolution is 3-5 deg and the lateral resolution is 35-50 cm, depending on the impact parameter of the crossing muon. The methods implemented to efficiently tag cosmogenic neutrons are also presented.Comment: 42 pages. 32 figures on 37 files. Uses JINST.cls. 1 auxiliary file (defines.tex) with TEX macros. submitted to Journal of Instrumentatio

    Muon and Cosmogenic Neutron Detection in Borexino

    Full text link
    Borexino, a liquid scintillator detector at LNGS, is designed for the detection of neutrinos and antineutrinos from the Sun, supernovae, nuclear reactors, and the Earth. The feeble nature of these signals requires a strong suppression of backgrounds below a few MeV. Very low intrinsic radiogenic contamination of all detector components needs to be accompanied by the efficient identification of muons and of muon-induced backgrounds. Muons produce unstable nuclei by spallation processes along their trajectory through the detector whose decays can mimic the expected signals; for isotopes with half-lives longer than a few seconds, the dead time induced by a muon-related veto becomes unacceptably long, unless its application can be restricted to a sub-volume along the muon track. Consequently, not only the identification of muons with very high efficiency but also a precise reconstruction of their tracks is of primary importance for the physics program of the experiment. The Borexino inner detector is surrounded by an outer water-Cherenkov detector that plays a fundamental role in accomplishing this task. The detector design principles and their implementation are described. The strategies adopted to identify muons are reviewed and their efficiency is evaluated. The overall muon veto efficiency is found to be 99.992% or better. Ad-hoc track reconstruction algorithms developed are presented. Their performance is tested against muon events of known direction such as those from the CNGS neutrino beam, test tracks available from a dedicated External Muon Tracker and cosmic muons whose angular distribution reflects the local overburden profile. The achieved angular resolution is 3-5 deg and the lateral resolution is 35-50 cm, depending on the impact parameter of the crossing muon. The methods implemented to efficiently tag cosmogenic neutrons are also presented.Comment: 42 pages. 32 figures on 37 files. Uses JINST.cls. 1 auxiliary file (defines.tex) with TEX macros. submitted to Journal of Instrumentatio
    corecore