130 research outputs found

    Hydrodynamic Models for Heavy-Ion Collisions, and beyond

    Get PDF
    A generic property of a first-order phase transition in equilibrium, and in the limit of large entropy per unit of conserved charge, is the smallness of the isentropic speed of sound in the ``mixed phase''. A specific prediction is that this should lead to a non-isotropic momentum distribution of nucleons in the reaction plane (for energies around 40 AGeV in our model calculation). On the other hand, we show that from present effective theories for low-energy QCD one does not expect the thermal transition rate between various states of the effective potential to be much larger than the expansion rate, questioning the applicability of the idealized Maxwell/Gibbs construction. Experimental data could soon provide essential information on the dynamics of the phase transition.Comment: 10 Pages, 4 Figures. Presented at 241st WE-Heraeus Seminar: Symposium on Fundamental Issues in Elementary Matter: In Honor and Memory of Michael Danos, Bad Honnef, Germany, 25-29 Sep 200

    Topological String Defect Formation During the Chiral Phase Transition

    Get PDF
    We extend and generalize the seminal work of Brandenberger, Huang and Zhang on the formation of strings during chiral phase transitions(berger) and discuss the formation of abelian and non-abelian topological strings during such transitions in the early Universe and in the high energy heavy-ion collisions. Chiral symmetry as well as deconfinement are restored in the core of these defects. Formation of a dense network of string defects is likely to play an important role in the dynamics following the chiral phase transition. We speculate that such a network can give rise to non-azimuthal distribution of transverse energy in heavy-ion collisions.Comment: 10 pages, 4 figures, minor correction

    11 beta-hydroxysteroid dehydrogenase type 1 regulates glucocorticoid-induced insulin resistance in skeletal muscle

    Get PDF
    OBJECTIVE: Glucocorticoid excess is characterized by increased adiposity, skeletal myopathy, and insulin resistance, but the precise molecular mechanisms are unknown. Within skeletal muscle, 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) converts cortisone (11-dehydrocorticosterone in rodents) to active cortisol (corticosterone in rodents). We aimed to determine the mechanisms underpinning glucocorticoid-induced insulin resistance in skeletal muscle and indentify how 11beta-HSD1 inhibitors improve insulin sensitivity. \ud RESEARCH DESIGN AND METHODS: Rodent and human cell cultures, whole-tissue explants, and animal models were used to determine the impact of glucocorticoids and selective 11beta-HSD1 inhibition upon insulin signaling and action. \ud RESULTS: Dexamethasone decreased insulin-stimulated glucose uptake, decreased IRS1 mRNA and protein expression, and increased inactivating pSer307^{307} insulin receptor substrate (IRS)-1. 11beta-HSD1 activity and expression were observed in human and rodent myotubes and muscle explants. Activity was predominantly oxo-reductase, generating active glucocorticoid. A1 (selective 11beta-HSD1 inhibitor) abolished enzyme activity and blocked the increase in pSer307^{307} IRS1 and reduction in total IRS1 protein after treatment with 11DHC but not corticosterone. In C57Bl6/J mice, the selective 11beta-HSD1 inhibitor, A2, decreased fasting blood glucose levels and improved insulin sensitivity. In KK mice treated with A2, skeletal muscle pSer307^{307} IRS1 decreased and pThr308^{308} Akt/PKB increased. In addition, A2 decreased both lipogenic and lipolytic gene expression.\ud CONCLUSIONS: Prereceptor facilitation of glucocorticoid action via 11beta-HSD1 increases pSer307^{307} IRS1 and may be crucial in mediating insulin resistance in skeletal muscle. Selective 11beta-HSD1 inhibition decreases pSer307^{307} IRS1, increases pThr308^{308} Akt/PKB, and decreases lipogenic and lipolytic gene expression that may represent an important mechanism underpinning their insulin-sensitizing action

    Deconfinement in Matrix Models about the Gross--Witten Point

    Full text link
    We study the deconfining phase transition in SU(N) gauge theories at nonzero temperature using a matrix model of Polyakov loops. The most general effective action, including all terms up to two spatial derivatives, is presented. At large N, the action is dominated by the loop potential: following Aharony et al., we show how the Gross--Witten model represents an ultra-critical point in this potential. Although masses vanish at the Gross--Witten point, the transition is of first order, as the fundamental loop jumps only halfway to its perturbative value. Comparing numerical analysis of the N=3 matrix model to lattice simulations, for three colors the deconfining transition appears to be near the Gross--Witten point. To see if this persists for N >= 4, we suggest measuring within a window ~1/N^2 of the transition temperature.Comment: 22 pages, 7 figures; revtex4. A new Fig. 2 illustrates a strongly first order transition away from the GW point; discussion added to clarify relation to hep-th/0310285. Conclusions include a discussion of recent lattice data for N>3, hep-lat/0411039 and hep-lat/050200

    The K/pi ratio from condensed Polyakov loops

    Get PDF
    We perform a field-theoretical computation of hadron production in large systems at the QCD confinement phase transition associated with restoration of the Z(3) global symmetry. This occurs from the decay of a condensate for the Polyakov loop. From the effective potential for the Polyakov loop, its mass just below the confinement temperature T_c is in between the vacuum masses of the pion and that of the kaon. Therefore, due to phase-space restrictions the number of produced kaons is roughly an order of magnitude smaller than that of produced pions, in agreement with recent results from collisions of gold ions at the BNL-RHIC. From its mass, we estimate that the Polyakov loop condensate is characterized by a (spatial) correlation scale of 1/m_\ell ~ 1/2 fm. For systems of deconfined matter of about that size, the free energy may not be dominated by a condensate for the Polyakov loop, and so the process of hadronization may be qualitatively different as compared to large systems. In that vein, experimental data on hadron abundance ratios, for example K/pi, in high-multiplicity pp events at high energies should be very interesting.Comment: 7 pages, 4 figures; discussion of the two-point function of Polyakov Loops in small versus large systems adde
    • 

    corecore