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With a rapidly increasing fraction of electricity generation being sourced from wind, extreme wind
power generation events such as prolonged periods of low (or high) generation and ramps in generation,
are a growing concern for the efficient and secure operation of national power systems. As extreme
events occur infrequently, long and reliable meteorological records are required to accurately estimate
their characteristics.

Recent publications have begun to investigate the use of global meteorological “reanalysis” data sets
for power system applications, many of which focus on long-term average statistics such as monthly-
mean generation. Here we demonstrate that reanalysis data can also be used to estimate the fre-
quency of relatively short-lived extreme events (including ramping on sub-daily time scales). Verification
against 328 surface observation stations across the United Kingdom suggests that near-surface wind
variability over spatiotemporal scales greater than around 300 km and 6 h can be faithfully reproduced
using reanalysis, with no need for costly dynamical downscaling.

A case study is presented in which a state-of-the-art, 33 year reanalysis data set (MERRA, from NASA-
GMAO), is used to construct an hourly time series of nationally-aggregated wind power generation in
Great Britain (GB), assuming a fixed, modern distribution of wind farms. The resultant generation esti-
mates are highly correlated with recorded data from National Grid in the recent period, both for
instantaneous hourly values and for variability over time intervals greater than around 6 h. This 33 year
time series is then used to quantify the frequency with which different extreme GB-wide wind power
generation events occur, as well as their seasonal and inter-annual variability. Several novel insights into
the nature of extreme wind power generation events are described, including (i) that the number of
prolonged low or high generation events is well approximated by a Poission-like random process, and (ii)
whilst in general there is large seasonal variability, the magnitude of the most extreme ramps is similar
in both summer and winter.

An up-to-date version of the GB case study data as well as the underlying model are freely available for
download from our website: http://www.met.reading.ac.uk/~energymet/data/Cannon2014/.
© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).
1. Introduction

Due to the increasing market penetration of wind power,
extreme wind power generation events (such as prolonged periods
of low generation and ramps in generation) are of growing concern
to policy makers and transmission system operators. Widespread
.J. Cannon), d.j.brayshaw@

.uk (J. Methven), p.j.coker@
d.com (D. Lenaghan).

r Ltd. This is an open access article
low (or high) power generation can persist because wind turbines
are insensitive to changes in wind speed when it is low (and tur-
bines produce little or no net power), or high (and turbines produce
their rated maximum power). Such persistent events have impor-
tant implications for electricity system capacity adequacy [1], as
well as for wider energy system planning and strategic assessment
purposes. In the near future, persistent (multi-day) low generation
events will likely influence fuel reserve planning (especially for
natural gas), whilst in the longer term, quantifying their frequency
and severity will be essential for assessing the potential of inno-
vative technologies such as bulk energy storage [2]. Ramps in
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1 The MIDAS wind speed observations are not assimilated into MERRA.
2 The smoothed topography in MERRA is a result of the coarse (approximately

50 km � 50 km) horizontal grid used in the underlying numerical weather pre-
diction model.
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generation often occur at moderate wind speeds where turbine
output ranges from zero to a rated maximum power. They also
occur at extremely high wind speeds when turbines are shut down
for safety, though this is much rarer [3,4]. Such ramps in generation
provide challenges for transmission system operators, who
schedule reserve holding in advance and require long term stra-
tegies for system balancing [5].

Assessing the frequency of extreme generation events directly
from power system data is problematic as there is too little data
available to determine representative return periods for events that
recur infrequently [6]. This is because wind speeds vary on inter-
annual and inter-decadal time scales [7,8]. In addition, the
geographical distribution of wind farms is constantly changing. In
Great Britain (GB), there has been a considerable shift towardswind
farms located in the south and offshore. For this reason, weather
events that occurred only a few years ago may not have the same
impact on the current wind farm distribution as they did before. In
response to these challenges, recent studies have estimated the
statistical behaviour of the wind resource by inferring the long-
term nationally-aggregated wind power output from surface-
based wind speed observations. For example [3,9], estimated
long-term mean generation statistics for the United Kingdom (UK)
and GB respectively, including a brief analysis of low wind periods.
Recent studies such as [4,10,11] have also used surface observations
to estimate generation statistics.

As an alternative to surface-based observations, authors in
academia [12e14], government [1] and industry [15] have begun
investigating the potential usefulness of meteorological reanalysis
data. Modern “reanalyses” are constructed using global numerical
weather prediction models that assimilate observations from a
wide variety of sources including land surface stations, buoys,
radiosonde balloons, aircraft and satellites [16,17]. Reanalysis data
is, by construction, coarsely resolved and so cannot represent
small-scale wind fluctuations at a particular site [18]. Nevertheless,
as will be shown in Section 2, good agreement with surface-based
observations is found when considering variability over sufficiently
large spatiotemporal scales.

For assessing wind power variability on a multi-hour, region-
ally-aggregated scale (as is the focus here), reanalyses may offer
numerous advantages over surface-based observations. Firstly,
wind observations are heavily influenced by their immediate locale
(local topography, vegetation or buildings), and so may not accu-
rately represent the conditions at nearby wind farms. In contrast,
because reanalyses do not resolve these local features, they
reproduce the large scale wind variability more faithfully. Secondly,
changing measuring equipment and recording standards produce
biases and discontinuities in the observational record. The impact
of these biases on reanalysis data is reduced by the use of multiple
observation sources, and by the consistent modelling (and data
assimilation) methods used throughout [16,17]. Thirdly, there are
few surface-based observations offshore, whereas reanalysis data
has global coverage. Finally, modern reanalysis products estimate
the wind at multiple vertical levels near the surface using atmo-
spheric boundary layer parameterisations. Whilst still heavily ide-
alised, their consideration of stability effects on the wind profile
represents an improvement over the assumption of a neutrally-
stratified boundary layer, which is implicit in most studies using
surface-based wind observations [4,10,11].

1.1. Paper outline

This paper is divided into two main parts (Sections 2 and 3).
Section 2 begins by investigating the accuracy with which data
from theMERRA reanalysis [16] reproduces the observed variability
in near-surface wind speed (Sections 2.1e2.2) and aggregated wind
power generation (Section 2.3) over different spatiotemporal
scales. Statistics of long-term mean aggregated wind power and
extreme events are then derived and compared to available power
system data (Sections 2.4e2.5).

In Section 3, a 33 year climatology of GB-aggregatedwind power
generation from 1980 to 2012 is used to estimate the frequency of
extreme events (persistent low or high generation and ramping),
assuming the wind farm distribution of September 2012 (Section
3.1). The inter-annual and seasonal variability of the results is
examined (Sections 3.2e3.3), as well as the sensitivity to changes in
the assumed dependence of wind farm power generation on wind
speed (herein, the “power curve”; Section 3.4).

Conclusions are presented in Section 4, where the potential
impacts of the climatology for power system management are
discussed.
2. Reanalysis verification

2.1. 10 m altitude wind speed comparisons

The degree to which wind speeds in MERRA reproduce surface-
based, hourly, 10 m altitude UK wind observations from the MIDAS
archive [19] will now be evaluated.1 To facilitate a proper com-
parison, the gridded MERRA data was bi-linearly interpolated to
obtain wind speeds at the co-ordinates of all 328 MIDAS stations.
Overall, the MIDAS observations span 1980e2011, though no indi-
vidual stations were operational for all 32 years.

Fig. 1(a) shows a site by site comparison between the 10 m
altitude wind speed records in MERRA (V) and MIDAS (U). As [14]
similarly noted, whilst in most cases MERRA accurately re-
produces the MIDAS wind speeds (the correlation coefficient is
0.73), there is a small systematic overestimation for around
U < 6 ms�1 and a large underestimation for around U > 20 ms�1.
The worst underestimations are removed when stations above
300 m altitude are discounted (Fig. 1(b)). This is a result of the
smoothed topography used in MERRA,2 which leads to artificially
low wind speeds for stations residing on the (unresolved) peaks
[20]. The smoothed topography may similarly contribute to the
small overestimation in wind speed for some low altitude stations.

AlthoughMERRA cannot fully capture the observedMIDASwind
variability at individual locations, the mean wind speed (spatially
averaged over all stations) is reproduced more accurately (Fig. 1(c)).
The range of mean wind speeds is smaller than at individual sites,
reflecting the reduced influence of extremely high winds which
only simultaneously effect a small number of stations. The corre-
lation coefficient between the mean wind speeds in MERRA and
MIDAS is greatly increased (to 0.94), which is consistent with the
“smoothing” commonly observed when averaging (or aggregating)
over large numbers of stations [3,21]. This smoothing reduces the
impact of small-scale wind variability, leaving the large-scale
variability (well resolved by MERRA) dominant. The improved
agreement in mean wind speed implies that MERRA should be
considerably more successful in reproducing regionally-aggregated
generation than that of an individual wind farm.

To evaluate the degree to which MERRA reproduces the tem-
poral variability observed in MIDAS, the above analysis was
repeated for the change inwind speed over different time spans. At
individual locations, MERRA tends to underpredict the change in
wind speed relative to MIDAS on short time spans (Dt ¼ 3 hr,



Fig. 1. Comparisons between the 10 m altitude wind speeds from MERRA and MIDAS between 1980 and 2011, for (a) all MIDAS station locations, (b) only stations below 300 m
altitude, and (c) the meanwind speed over all MIDAS station locations. The number of occurrences within 2.06 � 2.06 m2 s�2 bins is shown on a logarithmic scale (2.06 ms�1 is four
times the discretisation of the MIDAS wind speed data). The black solid line indicates a 1:1 agreement, whereas the dashed line shows a linear least squares fit to the data. The linear
correlation coefficient is given by r.
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Fig. 2(a)), but is more accurate over longer time spans (Dt ¼ 24 hr,
Fig. 2(d)). Themost extreme changes inwind speed are consistently
underestimated, with the largest underestimations associated with
high altitude stations (Fig. 2(b, e)). As before, the correlation coef-
ficient increases markedly when considering the spatial mean over
all stations (Fig. 2(d, f)).

This analysis shows that MERRA successfully reproduces the
observed near-surface wind variability over large spatiotemporal
scales, but less accurately reproduces localised wind variability
(especially in regions of complex terrain) and changes in wind
speed over short time spans. In Section 2.2, the precise spatio-
temporal scales over which MERRA reproduces the observed vari-
ability are estimated.
Fig. 2. Comparisons between the rate of change in 10 m altitude wind speed in MIDAS (DU) a
for (a, d) all MIDAS station locations, (b, e) stations lower than 300 m altitude, and (c, f) the m
b, d, e) 2.06 ms�1 by 2.06 ms�1 or (c, f) 0.515 ms�1 by 0.515 ms�1 bins are shown on a logar
solid 1:1 line indicates perfect agreement and the dashed line a linear least squares fit to t
2.2. Estimating the spatiotemporal scales over which MERRA
reproduces the observed wind variability

To estimate the spatial scales over which MERRA adequately
captures the observed wind variability in MIDAS, the difference in
wind speed between two stations (i and j) in MERRA (dV ¼ Vi � Vj)
and MIDAS (dU ¼ Ui � Uj) are compared. In Fig. 3(a), the correlation
of dV and dU (r(dU,dV)) is plotted as a function of the distance be-
tween the stations. Unsurprisingly, there are no station pairs for
which dV and dU agree perfectly (i.e., r(dU,dV)¼ 1), however there is
a clear improvement as the station separation increases. Taking the
median r(dU,dV) as a function of distance, r(dU,dV) / 0 as the dis-
tance decreases to zero. In this extreme, dV / 0 as MERRA cannot
nd MERRA (DV) over (a, b, c) Dt ¼ 3 hr and (d, e, f) Dt ¼ 24 hr. Panels show comparisons
ean wind speed over all MIDAS station locations. The number of occurrences within (a,
ithmic scale (0.515 ms�1 is the discretisation of the MIDAS wind speed data). The black
he data (these lines overlap in (f)). The linear correlation coefficient is given by r.



Fig. 3. The linear correlation between MERRA and MIDAS for (a) the difference in wind speed between station pairs and (b) the difference in accelerations and decelerations in the
wind between station pairs, as a function of the station separation. In (a), each dot represents a different station pair and the black line represents the median linear correlation
coefficient for each 50 m increase in distance. Also shown is the number of station pairs within each 50 m distance bin (grey in print, green online). In (b), the median lines are
shown for different time steps (Dt). For comparison, the median line from panel (a) is reproduced in (b) as a dashed line. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

3 As the wind data is available at more than one vertical level, there is no need to
assume a fixed roughness length in the vertical interpolation.
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resolve the small scale variability affecting dU. As the station sep-
aration increases, the large scale atmospheric processes resolved by
MERRA become important and r(dU,dV) increases rapidly. Although
larger spatial scales generally yield higher correlations, the benefit
of increasing distance slows markedly beyond around 300 km,
where rðdU; dVÞz0:5. Averaging (or aggregating) over many sta-
tions on this spatial scale is therefore likely to produce a high
correlation between the MERRA and MIDAS estimates.

To estimate the temporal scales over which MERRA accurately
reproduces the observed variability, the above analysis is extended
to compare the correlation between d(DV) ¼ DVi�DVj and
d(DU) ¼ DUi�DUj. This tests the ability of MERRA to reproduce the
observed spatial variability in accelerations (or decelerations) in
wind speed, over varying time spans (Dt). Fig. 3(b) shows the me-
dian dependence of r(dDU,dDV) as a function of distance, for varying
Dt (for clarity, the individual station pairs are omitted, though they
have similar distributions about the median as in Fig. 3(a)). As
before, the median r(dDU,dDV)/0 as the distance tends to zero
regardless of Dt. The increase in r(dDU,dDV) with distance is how-
ever strongly dependent on Dt. Over short time spans, r(dDU,dDV)
remains small for all station separations, whereas for large time
spans, the increase is almost identical to that in Fig. 3(a).

In general, the degree to which small scale variability between
stations is smoothed upon averaging or aggregating is dependent on
the number of stations as well as their separation. The number of
stations beyond which the benefit of extra smoothing is small was
estimated at around 50 by Ref. [21], who studied the variability of
wind power generation in Germany and Ireland. A similar figurewas
found here by analysing randomly-selected distributions of stations
in MIDAS and MERRA (not shown). The number of MIDAS stations
operational at any one time averages around 130 (approximately
40% of the total), and so is considerably higher than 50.

This analysis suggests that care should be taken when inter-
preting wind variability from MERRA on spatiotemporal scales
below around 300 km and 6 h. In the following section, the MERRA
data is used to construct a GB-aggregated wind power time series,
which is evaluated against National Grid data.

2.3. GB-aggregated wind power

In this section, the accuracy with which MERRA can be used to
reproduce the measured GB-aggregated hourly wind power from
2012 is determined, and understood in light of the results of Section
2.1. The wind farm distribution shown in Fig. 4(a) is used
throughout this paper as it allows both for a comparison with the
2012 National Grid data and provides a contemporary distribution
for the climatology presented in Section 3. For each wind farm
location, a MERRA-derived power time series was derived by: (i) Bi-
linearly interpolating the horizontally gridded 2 m, 10 m and 50 m
altitude winds to each location, (ii) vertically interpolating the
winds to a representative turbine hub height (as estimated by
National Grid for each wind farm), assuming a logarithmic change
in wind speed with altitude,3 (iii) applying an idealised power
curve (as in Fig. 4(b)) to convert hub-height wind speed to wind
farm capacity factor. The GB-aggregated capacity factor,

CF ¼ 100 %
C

X188
i¼1

ci giðtÞ; (1)

is the power generated by each wind farm (the product of the local
capacity factor, gi(t), and the wind farm capacity, ci) summed over
all 188 wind farms in the distribution (Fig. 4(a)), and normalised by
the total GB capacity (C ¼ 7.0 GW). A sensitivity test prior to pub-
lication was performed in which the distribution in Fig. 4(a) was
replaced with one from April 2014. This showed the capacity factor
time series to be only weakly sensitive to modest changes in the
wind farm distribution (not shown).

Results will be presented here using both the “original” and
“adjusted” power curves shown in Fig. 4(b) (the “OFGEM” curve
will be used in Section 3.4). The original curve is based on the
design performance of a Siemens 2.3 MW turbine, but has been
modified by National Grid to reflect the average dependence of
forecasted wind on measured generation (personal communica-
tion). The maximum output is (on average) less than 100% due to
atmospheric phenomena such as turbine wakes, which decrease
the wind speed within wind farms [22], as well as other phenom-
ena such as turbine unavailability [23] and ageing [14]. For
simplicity, wind farms are assumed to shut down above 25 ms�1

and return to full power at 21 ms�1 (typical values advised by
National Grid).

Fig. 5(a) compares the MERRA-derived CF using the original
power curve with National Grid generation data from 2012. This
includes generation from all wind farms for which National Grid



Fig. 4. (a) The wind farm distribution and capacity (colours) of September 2012 (data from National Grid). (b) A range of transformation functions used to convert hub-height wind
speed to power output (termed “power curves”). The black curve is based on the design performance of a Siemens 2.3 MW turbine, but is modified to improve agreement between
forecast wind speed data and measured power generation. The red curve has been adjusted to correct for small biases in the GB-aggregated power output found using the original
curve (Fig. 5). The red dashed line indicates the wind speed at which wind farms come back online after they cut-out at 25 ms�1. The blue curve is that assumed in Ref. [1]. The
sensitivity of the results in Section 3 to the choice of power curve is discussed in Section 3.4. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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receive metering.4 To facilitate a proper comparison, instances
where wind farms were deliberately curtailed in response to
transmission constraints are accounted for by adding the curtailed
power back into the generation data.5 Other human influences,
such as turbine maintenance, remain. Even though, unlike the
National Grid data, the MERRA-derived estimates assume a con-
stant wind farm distribution that includes many unmetered wind
farms, the two time series are highly correlated (with a correlation
coefficient of 0.96), albeit with a small overestimation for high
values. This high correlation can be understood given the results of
Sections 2.1e2.2, which found that MERRA accurately represents
wind variability on spatial scales greater than around 300 km (the
mean capacity-weighted distance between wind farms is 328 km).

The adjusted curve in Fig. 4(b) is of the same form as the original
curve, but is tuned to remove the systematic biases in Fig. 5(a).
Fig. 5(b) shows a comparison between the MERRA-derived CF, us-
ing this adjusted curve, and that derived from the 2012 measured
data. All MERRA-derived results from here on utilise this adjusted
power curve.

From Sections 2.1e2.2, we expect MERRA to reproduce changes
in CF over time intervals greater than around 6 h Fig. 6 shows
comparisons between the MERRA-derived DCF (using the adjusted
power curve) and equivalent National Grid values, for a range of Dt.
At Dt ¼ 3 hr, the time series are reasonably well correlated (with a
correlation coefficient, r ¼ 0.77), although the largest changes in CF
are consistently underestimated. As Dt increases to 6 h and 12 h, the
correlation increases (r ¼ 0.86 and 0.93 respectively) and the sys-
tematic underprediction in DCF reduces considerably.
2.4. Long-term mean statistics of GB-aggregated wind power

In this section, the MERRA-derived CF time series described in
Section 2.3 is used to analyse the annual-mean CF and the fre-
quency distribution of CF values. Fig. 7(a) shows a comparison
between the MERRA-derived annual-mean CF from 1980 to 2012
4 Typically this includes wind farms with capacity over 100 MW in England and
Wales, over 30 MW in southern Scotland (Scottish Power's transmission area), and
over 10 MW in northern Scotland (Scottish Hydro's transmission area) [24].

5 On average, less than 0.1% of GB capacity was curtailed in 2012.
and recent estimates from National Grid and the UK government
(the Digest of UK Energy Statistics, herein DUKES [25]).6 The
MERRA-derived 33 year mean capacity factor is 32.5%; slightly
above previous long term estimates ([3] suggested 30%). From the
available National Grid and DUKES data, the variability in annual-
mean CF is well reproduced by the MERRA-derived time series,
including for the low generation year of 2010. The slight reduction
in wind speed since the late 1980s is broadly consistent with the
“stilling” observed in the UK [4] and more generally in the conti-
nental mid-latitudes [26]. This may be a result of inter-decadal
variability associated with climate phenomena such as the North
Atlantic Oscillation (NAO) which significantly influences European
weather [8]. The large year-to-year variability is also correlated
with inter-annual fluctuations in the NAO [7,27].

As shown in Fig. 7(b), the frequency distribution of hourly CF
values is heavily skewed towards low values, with the most com-
mon CF around 4e13 % in 2012 and around 5e6 % for the 33 year
MERRA-derived time series. The distribution closely matches that
of the National Grid data (to within 15 h per unit CF on average).
There are no occurrences above CF > 90 % in either the MERRA-
derived or National Grid estimates. The cumulative frequency re-
veals the 33 year median CF ¼ 26.4 %, which is significantly below
the mean (32.5%) due to the positive skew in the frequency dis-
tribution. Percentiles from the cumulative distribution will be used
in Sections 2.5 and 3 to define persistent low and high wind power
events.

2.5. Extreme wind power generation in 2012

As the central purpose of this paper addresses extreme wind
power generation events (persistent low or high generation and
ramping), we nowevaluate the ability of theMERRA-derived power
time series to reproduce the extremes of 2012.

The number of persistent low generation events is presented in
Fig. 8(a, d) as a function of both a threshold below which CF drops,
and the length of time for which it persists below that threshold.7

Events that persist beyond the beginning or end of the time series
6 The government estimates are for the whole of the UK.
7 These are sometimes called “load-duration” curves.



Fig. 5. Comparisons between MERRA-derived and National Grid estimates of GB-aggregated wind power generation in 2012. The MERRA-derived capacity factor (CF) is calculated
using (a) the original power curve, and (b) the adjusted power curve (Fig. 4(a)). The shading indicates the number of occurrences of CF within 4% by 4% bins, and is displayed on a
logarithmic scale. The black solid line indicates a 1:1 agreement, whereas the dashed line shows a linear least squares fit to the data (these lines overlap in (b)). The linear correlation
coefficient is given by r.
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are immediately terminated. For example, there were 32 events for
which CF � 10.3 % for at least 24 h according to the MERRA-derived
estimates and 29 according to the National Grid data. Similarly,
Fig. 8(b, e) shows the number of persistent high generation events as
a function of both a threshold above which CF rises, and the time for
which it persists above that threshold. The thresholds used corre-
spond to percentiles of the cumulative frequency distribution in
Fig. 7(b). The CF¼ 2.2%, 6.3% and 10.3% thresholds correspond to the
1st, 10th and 20th percentiles, whereas the CF ¼ 55.3 %, 69.6% and
87.1% thresholds correspond to the 80th, 90th and 99th percentiles.

For both persistent low and high generation events (Fig. 8(a, b)),
there is good general agreement between the MERRA-derived and
National Grid estimates. In most cases however, the number of
short-lasting events is underestimated and the number of long-
lasting events is overestimated. This is consistent with the
observed underestimation of high frequency variability in the
MERRA-derived time series (Fig. 6), which may otherwise break up
persistent events into shorter segments. Fig. 8(d, e) shows the same
plot but focuses on the rarest (andmost extreme) persistent events.
The MERRA-derived time series reproduces the most extreme
events well in most (but not all) cases.

Fig. 8(c, f) shows the number of hours which preceded a ramp in
CF of at least the given threshold magnitude, within different time
windows. For example, therewere 57 h in 2012 that preceded a ramp
of at least DCF ¼ 50% within 12 h according to the MERRA-derived
estimates, and 55 according to the National Grid data. By definition,
any ramp occurring within 12 h of a given hour must also have
occurred within any time window greater than 12 h. There is
generally good agreement between the MERRA-derived and
measured ramps (Fig. 8(c)), albeitwith a systematic underestimation
of the number of hours precedingmodest ramps. As before, thismay
be due to the lack of high frequency variability inMERRA,whichmay
otherwise add to the maximum DCF. This is also true for the rarest
(and most extreme) ramps (Fig. 8(f)), though the underestimation
reduces as the time window increases and the magnitude of high
frequency variations becomes small relative to the size of the ramps.

This analysis demonstrates that, whilst imperfect, the frequency
with which extreme wind power generation events occur in the
MERRA-derived time series closely matches that from the National
Grid data.

3. A 33 year climatology of extremewind power generation in
Great Britain

In this section, a 1980e2012 climatology of extremewind power
in GB is presented using the hourly time series of MERRA-derived
CF described in Section 2. The mean frequency (the number that
occur in an average year) of different extreme events is presented in
Section 3.1, after which the inter-annual and seasonal variability is
discussed (Sections 3.2e3.3). Finally, the sensitivity of the results to
the choice of power curve is analysed in Section 3.4.

3.1. Mean frequency of extreme events

The mean frequency with which persistent low CF events occur
is shown in Fig. 9(a) as a function of both the threshold below
which CF drops and the time for which it persists below that
threshold. The frequency reduces as the CF threshold is decreased
or when the persistence time increases, as both provide a more
stringent test for what constitutes a persistent low CF event. For
example, there are on average 5.6 events per year where CF� 5% for
at least 24 h. Similarly, Fig. 9(b) shows the mean frequency with
which persistent high CF events occur as a function of both the
threshold above which CF rises and the time for which it persists
above that threshold. In this case, the frequency reduces as the
threshold CF is increased or when the persistence time increases.
The dashed lines in Fig. 9(a, b) indicate the most persistent events
in the 33 year time series, for each threshold CF.

The mean frequency with which low or high generation events
occur decreases approximately exponentially with increasing
persistence, suggesting they can be approximated as a Poisson-like
process where the mean frequency,

N ¼ N0 exp
��tp

l

�
; (2)

where tp is the persistence time, N0 is the mean frequency of events
of any length (with tp � 0) and l controls the rate at which N de-
creases with increasing tp. Fig. 10(a, b) shows themean frequency of
persistent low and high generation events on a logarithmic scale,
for a range of CF thresholds.

Both l and N0 vary as a function of the threshold CF. To illustrate
this, Fig. 10(c) shows the variation of l with CF threshold. For all
thresholds, lwas calculated via a linear regression of log ½NðtpÞ�, for
all points with N > 1 yr�1 (so each N is based on more than 33
events). To properly compare the persistence of low and high
generation events, the rate parameter is plotted not against the
threshold CF itself, but against the corresponding percentile of the
cumulative distribution in Fig. 7(b), from the most extreme
percentile to the least. For the 20 most extreme percentiles, the
values of l are very similar for both low and high wind power
generation events. For less extreme percentiles, l is smaller for high



Fig. 6. Comparisons between MERRA-derived and National Grid estimates of the rate of change in GB-aggregated wind power generation in 2012. Changes over (a) Dt ¼ 3 hr, (b)
Dt ¼ 6 hr and (c) Dt ¼ 12 hr are shown. The adjusted power curve is used in all panels. The shading indicates the number of occurrences of DCF within 4% by 4% bins, and are shown
on a logarithmic scale. The black solid line indicates a 1:1 agreement, whereas the dashed line shows a linear least squares fit to the data. The linear correlation coefficient is given
by r.
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generation events than for low generation events, implying that
less extreme low generation events tend to persist longer than less
extreme high generation events. This may be a consequence of
atmospheric blocking, which is associated with low winds and can
persist for weeks [28]. As shown by the alternative axes in Fig.10(c),
the percentiles of extremeness correspond to very different ranges
of threshold CF for low and high generation events. This is a
consequence of the CF frequency distribution being heavily skewed
towards low values (Fig. 7(b)).

In Fig. 9(c), the mean frequency of hours for which there is a
subsequent ramp in CF is shown as a function of a threshold DCF,
which the ramp surpasses, and the time window within which the
ramp took place. Ramps become rarer as the thresholdDCF increases
or as the time window decreases, as both modifications provide a
more stringent test for what constitutes a ramp. The most extreme
DCF increases rapidly with the time window up to around 9e12 h,
after which it plateaus. This corresponds to the transition time of a
typical low pressure (cyclonic) weather system over the UK. As the
time window increases to very large values (not shown), the most
extreme ramp tends to the maximum permitted by the power curve
(DCF ¼ 91.3%). Given the variability in CF over short time spans is
likely to be underestimated (Section 2), the statistics for time win-
dows less than around 6 h should be treated with caution.

Unlike persistence events, ramps do not have beginning and end
points defined by specific thresholds, and so are not counted
independently. For example, a rampmay be countedmultiple times
if it corresponds to the largest DCF within a given time window for
more than 1 h in the time series. The number of hours for which
Fig. 7. A comparison of (a) different estimates of annual-mean capacity factor and (b) the fr
Grid data. The cumulative frequency distribution obtained using the full (1980e2012) time s
low and high generation events.
there is a subsequent ramp of at least a given threshold DCF does
not therefore decrease exponentially with increasing time window
(not shown). For this reason, the analysis shown in Fig. 10 is not
repeated for ramping events.

As a sensitivity test, the exclusion of high wind cut-out events
was found to make little difference to the mean frequency (not
shown). This is likely because they tend to be geographically iso-
lated, and so have a small impact on GB-aggregated generation. In
addition, similar results were found by analysing positive and
negative ramps in isolation. Whilst similar qualitative trends were
observed on smaller regional scales, themean frequency of extreme
events increased markedly as the smoothing effect of aggregation
was reduced (not shown). Some differences between the regions of
GB were noted, with a propensity for fewer low generation events,
more high generation events and more ramps in more northerly
regions.

3.2. Inter-annual variability

The results of Section 3.1 vary substantially from year to year.
Fig. 11(a, b, d, e) shows the frequency of low and high generation
events as a function of persistence time, for the CF thresholds
introduced in Section 2.5. The frequency in a mean year ±1 stan-
dard deviation is shown, as well as the highest and lowest number
found in any one year. When the persistence time tends to zero, the
number of events tends to the mean number of low CF events. As
the persistence time increases, the number of events that persist at
least that long reduces.
equency distribution of capacity factor values within the MERRA-derived and National
eries is shown in grey. Percentiles from this curve are used to define the thresholds for



Fig. 8. Comparison between the MERRA-derived number of extreme generation events in 2012 (solid), and the number according to National Grid data (dashed). Shown are the
number of (a) persistent low generation events and (b) persistent high generation events for three different CF thresholds (described in Section 2.4), and (c) the number of hours
preceding a ramp in generation within the indicated time window (twin). Panels (def) are as in (aec) but show only the rarest events.
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In Fig. 11(c, f), the mean number of hours preceding a ramp
surpassing the DCF threshold is shown, for three different time
windows. As in the other panels, the frequency in a mean year ±1
standard deviation is shown, as are the highest and lowest number
that occurred in any one year. The number of hours tends to the
mean number of hours per year (8767) as the threshold CF is
reduced to zero, and reduces as the threshold DCF increases.

For all types of extreme generation (low, high and ramping),
there is large inter-annual variability. This is especially true for the
most extreme events, for which some examples are presented in
Table 1. For many extremes, the difference between the most and
least active year exceeds the mean frequency.
Fig. 9. The mean frequency of extreme generation events derived from the MERRA reanalys
function of the threshold below which the capacity factor (CF) remains for at least the given
a function of the threshold above which CF remains for at least the given persistence time. (c
DCF within the given time window. As discussed in Section 2, the variability in CF over time
most extreme events in the 33 year time series.
3.3. Seasonal variability

In addition to inter-annual variability, there is substantial sea-
sonal variability in the frequency of extremes. Examples of specific
event types are given in Table 2. As for inter-annual variability
(Section 3.2), the range in the mean frequency from summer to
winter can be larger than the frequency in a mean season (calcu-
lated as one quarter of the mean frequency).

In Fig. 12(a, d), the mean seasonal frequency of persistent low
generation events is shown, as a function of persistence, for the
CF � 6.3% threshold. There is a clear propensity for both a greater
number in summer than winter (with Spring and Autumn close to
is (1980e2012). (a) The frequency of persistent low generation events is expressed as a
persistence time. (b) The frequency of persistent high generation events is expressed as
) The frequency of hours for which there is a subsequent ramp in generation of at least
windows less than around 6 h is likely to be underestimated. The dashed lines mark the



Fig. 10. The mean frequency of (a) low and (b) high wind power generation events (solid), for different CF thresholds. Also shown is a linear regression of log ½NðtpÞ� (Eq. (2),
dashed), which was fitted using all events for which N > 1 yr�1. (c) The rate parameter for low (blue) and high (red) generation events, which is a function of threshold CF. To
compare the low and high generation events, the rate parameter is plotted as a function of a percentile representing the extremeness of the threshold CF. These are derived from the
cumulative frequency distribution of CF values in Fig. 7(b). The threshold CF values corresponding to these percentiles are shown on the alternative y-axes (right). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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average) and a greater number of more persistent events. This oc-
curs because the summer months are generally associated with
lighter winds [29]. In addition, the longest lasting event with
CF� 6.3% in summer lasted 6.9 days, whereas inwinter it lasted 3.5
days. This is consistent with known seasonal trends in the jet
stream, which is often weaker in summer [30].

In Fig. 12(b, e), the mean seasonal frequency of persistent high
generation events is shown as a function of persistence, for the
CF � 69.6% threshold. Mirroring the results for low generation
Fig. 11. The mean frequency of extreme generation events derived from the MERRA reanalys
high generation events are expressed as a function of their persistence for three low CF thres
distribution in Fig. 4(b). (c) The mean number of hours for which there is a subsequent ram
show only the rarest events. All panels show the mean number (solid line) plus or minus on
one year (dashed).
events, there are both a greater number of high CF events in winter
than summer, and a greater number of more persistent events. The
longest lasting eventwith CF� 69.6% in summer lasted 1.6 days, but
in winter lasted 5.2 days.

The mean frequency of ramps also varies seasonally. Fig. 12(c, f)
shows, using a time window of twin ¼ 12 hr, many more extreme
ramps inwinter than in summer. This is likely due to the increase in
the number of cyclones impinging on the UK in winter, and thus
goes hand in hand with an increase in the frequency of high
is (1980e2012). The frequency of (a) persistent low generation events and (b) persistent
holds that correspond to the 1st, 10th and 20th percentiles of the cumulative frequency
p of at least DCF within different time windows (twin). Panels (def) are as in (aec) but
e standard deviation (shaded), as well as the minimum and maximum numbers for any



Table 1
The frequency of different extreme events, as derived from the MERRA reanalysis.
For each event type, some example thresholds are shown alongside the corre-
sponding mean frequency (±1 standard deviation). The minimum and maximum
yearly totals are also shown.

Event type Thresholds Mean year Min. year Max. year

Persistent
low

CF � 6.3% tp � 24 hr 10 ± 3 yr�1 2 yr�1 18 yr�1

Persistent
high

CF � 69.6% tp � 24 hr 12 ± 4 yr�1 4 yr�1 27 yr�1

Extreme
ramp

DCF � 50% twin ¼ 12 hr 103 ± 29 hr yr�1 57 hr yr�1 161 hr yr�1
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generation events. Interestingly, there is little seasonal variability in
the most extreme DCF; the largest ramp is DCF ¼ 74% in summer
and DCF ¼ 79% in winter.
3.4. Sensitivity to changes in the power curve

As the underlying wind speeds do not change, using fixed CF or
DCF thresholds with different power curves modifies the percentile
of extremeness to which the thresholds correspond. The results
presented in this paper are thus sensitive to changes in the power
curve. If these thresholds are instead set according to constant
percentiles of extremeness (which vary along with the power
curve), then the resultant frequency of extreme events is insensi-
tive to changes in the power curve (not shown).

To illustrate the sensitivity of the results to changes in the power
curve when constant CF or DCF thresholds are used, Fig. 13 shows
the mean frequency of the rarest extremes using the three wind
farm power curves in Fig. 4(b). Whilst the frequency of low gen-
eration events is largely insensitive to the choice of power curve at
the CF � 6.3% or CF � 10.3% thresholds (not shown), it is sensitive
when CF � 2.2% (Fig. 13(a)). Whilst CF � 2.2% for at least 12 h
around 2 yr�1 using the adjusted curve, this is increased to 7 yr�1

using the original curve and only 0.5 yr�1 using the OFGEM curve.
This is due to the subtle difference in which each curve begins
generating. Whilst the OFGEM curve generates over 2.2% of ca-
pacity at a wind speed of just 2.8 ms�1, the adjusted curve requires
at least 3.2 ms�1, and the original curve requires at least 4.0 ms�1.

The mean frequency of persistent high generation events is
slightly sensitive to changes in the power curve at the CF� 55.3% or
CF � 69.6% thresholds (not shown), and this sensitivity increases
for the CF � 87.1% threshold (Fig. 13(b)). Whilst CF � 87.1% for at
least 12 h around 2 yr�1 using the adjusted curve, this is increased
to 10 yr�1 using the original curve and does not occur at all using
the OFGEM curve. This sensitivity arises because the rated
maximum CF for the OFGEM curve is only 88.5%, whereas the
adjusted and original curves reach 91.3% and 97.6% respectively.

The mean frequency of ramps is also sensitive to changes in the
power curve. The number of hours for which there is a subsequent
DCF � 50% within 12 h is around 103 yr�1 using the adjusted curve,
but 177 yr�1 using the original curve and just 49 yr�1 using the
Table 2
The mean seasonal frequency of different extreme events, as derived from MERRA.
For each event type, some example thresholds are shown with the corresponding
frequency of a mean (3 month) season, as well as the mean frequencies for events
occurring only in summer (June to August) and winter (December to February).

Event type Thresholds Mean
season

Mean
summer

Mean
winter

Persistent low CF � 6.3% tp � 24 hr 2.6 5.3 1.0
Persistent high CF � 69.6% tp � 24 hr 3.2 0.2 7.4
Extreme ramp DCF � 50% twin ¼ 12 hr 25.8 9.3 43.3
OFGEM curve. This sensitivity is due to the difference in slope of the
power curves (Fig. 4(b)). The same change in wind speed can result
in a larger ramp using the original curve, and a smaller ramp using
the OFGEM curve.

These results demonstrate that whilst the statistics of extreme
events are insensitive to the choice of power curve if the thresholds
used to define the events correspond to the same climatological
percentile of extremeness. However, for many practical applica-
tions, the thresholds are defined using a constant CF (or DCF)
threshold. In such circumstances, whilst the general trends re-
ported here are robust to changes in the power curve, the quanti-
tative values can change markedly.

4. Conclusions

This paper examines the ability of a state-of-the-art global
reanalysis data set (MERRA [16]) to accurately reproduce extreme
wind power generation statistics, including for (i) persistent low
generation, (ii) persistent high generation, and (iii) ramps in gen-
eration on sub-daily time scales. After extensive verification against
10 m altitude wind speed observations and measured nationally-
aggregated generation (Section 2), a 33 year climatology of
extreme wind power generation events is derived, assuming a
fixed, modern wind farm distribution from Great Britain (GB; Sec-
tion 3). An up-to-date version of the GB case study data as well as
the underlying model is freely available for download at http://
www.met.reading.ac.uk/~energymet/data/Cannon2014/.

MERRA is a coarse global atmospheric reanalysis (the horizontal
grid size is around 50 km by 50 km) and is found to poorly
reconstruct observed hourly variations in near surface wind speed
at individual geographical locations. Nevertheless, it successfully
captures the gross patterns of near surface wind variability at
spatiotemporal scales greater than around 300 km and 6 h. To
investigate wind power generation statistics, an hourly GB-
aggregated time series is constructed by (i) spatially interpolating
the MERRA wind speeds to the wind farm locations, (ii) extrapo-
lating vertically assuming a logarithmic change between the
available vertical levels to typical turbine hub heights, (iii) applying
a simple transformation from wind speed to wind farm power
generation, and (iv) aggregating over all (188) wind farms. The
resultant hourly generation estimates are found to be highly
correlated with GB-aggregated National Grid data for 2012, with a
correlation coefficient of 0.96. This degree of correlation is similar
to that obtained comparing longer-term averages nationally-
aggregated generation (e.g., monthly averages [14]). The temporal
variability is also well reproduced on time scales greater than
around 6 h.

The frequency and severity of extreme generation events
observed in 2012 is found to be well reproduced by the MERRA-
derived time series. As such, it can be used to derive multi-
decadal climatologies of extreme wind power production,
assuming a modern wind farm distribution. As reanalysis data has
global coverage, the GB case study presented here could be
repeated for any distribution of wind farms (past, present or
future), anywhere in the world. At 33 years, the MERRA-derived
climatology for GB is considerably longer than direct generation
records, which extend back only around 5e10 years and suffer from
large inhomogeneities due to the rapidly changing wind farm dis-
tribution. This approach also avoids many known issues with 10 m
wind mast observations, such as their sensitivity to local topo-
graphic effects and sparse offshore availability. It also avoids the
computational expense of dynamical downscaling using high res-
olution meteorological models [31].

The 33 year mean capacity factor (CF) for GB is estimated at
32.5% (median 26.4%). This is slightly higher than previous long

http://www.met.reading.ac.uk/%7Eenergymet/data/Cannon2014/
http://www.met.reading.ac.uk/%7Eenergymet/data/Cannon2014/


Fig. 12. The mean seasonal frequency of extreme generation events derived from the MERRA reanalysis (1980e2012), for four seasons and a mean season. Panels show (a)
persistent low generation (CF � 6.3%), (b) persistent high generation (CF � 69.6%), and (c) ramps in generation within a 12 h time window. Panels (def) are as in (aec) but show only
the rarest events.
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term estimates ([3] suggested 30%), which may be due to the
different geographical distributions assumed (especially as Sinden
did not include offshore sites, which tend to be windier). The
annual-mean CF was found to range from 23.0% (in 2010) to 34.2%
(in 1986). Such variability, if reflected on a site-by-site basis, would
be highly relevant to the financing and operational revenue streams
of wind farms as well as energy prices and trading.

The climatology is used to estimate the mean frequency of
extremely persistent low and high wind power generation events
across a wide range of thresholds. Moderately persistent low gen-
eration events (at least 2 days with CF � 5%) are found to occur 1.2
times yr�1, whereas the lowest generation threshold for which
there was a continuous 5 day lull in generation [2] was CF� 6%. The
Fig. 13. The mean frequency of the rarest extreme generation events from 1980 to 2012, as
derive the 33 year climatology (Section 3). (a) Low generation events (CF � 2.2%), (b) high
number of both low and high generation events decreases
approximately exponentially with increasing persistence, implying
they can be approximated as a Poisson-like process. This also
demonstrates that there are no a priori meteorological or statistical
reasons to focus on 5 day lulls specifically. These results were also
found to contain large seasonal variations, with a tendency for
more extended lulls in summer than winter. For example, whilst
the most extreme 5 day lull occurred in summer (5 days with
CF � 6%), in winter it occurred only at the CF � 9% threshold.
Extended periods of low generation (particularly in combination
with low temperature and high electricity demand) are important
for evaluating the capacity credit of wind power and, potentially,
have ramifications for the security of supply in the presence of
calculated using the three power curves in Fig. 4(b). The adjusted curve is that used to
generation events (CF � 87.1%) and (c) ramps within a 12 h time window.
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limited gas reserves. High generation events may become
increasingly important as installed wind capacity increases against
a relatively fixed transmission system, inducing deliberate curtail-
ment to ensure local load balancing [32]. In future, we hope to link
this research with reanalysis-based estimates of electricity demand
(as outlined in Ref. [33]), thus enabling a more thorough investi-
gation of the above power system impacts.

The results derived from MERRA for extreme ramps in genera-
tion must be treated with some caution given that generation
variability over shorter time scales tends to be underestimated. This
is clearly an area where dynamical downscaling can play a signifi-
cant role (e.g., for evaluating reserve requirements on shorter time
scales). Nevertheless, the MERRA-derived time series suggests that
ramps of over 60% in GB-aggregated CF within 6 h are possible.
Again, these statistics show large inter-annual and seasonal vari-
ability. Whilst large ramps are less common in summer than in
winter, the size of the most extreme ramps is only slightly larger in
winter. The degree to which extreme ramps are accurately pre-
dicted by operational weather forecast models is currently being
investigated.

The statistics presented here were found to be quantitatively
sensitive to the choice of wind farm power curve. The power curve
used to derive the 33 year climatology was based on a single-
turbine response curve and assumed a deterministic relationship
between wind speed and generation. The sensitivity to changes in
the power curve was found to be a consequence of the associated
shift in the cumulative CF distribution. These sensitivities could be
reduced using more accurate, farm-specific, power curves. The
construction of these curves would benefit greatly from increased
public access to farm-level generation data (site-specific, high fre-
quency generation and turbine availability), as well as the adoption
of a probabilistic, rather than deterministic transformation be-
tween wind speed and wind farm generation.
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