63 research outputs found
Virtual reality surgery simulation: A survey on patient specific solution
For surgeons, the precise anatomy structure and its dynamics are important in the surgery interaction, which is critical for generating the immersive experience in VR based surgical training applications. Presently, a normal therapeutic scheme might not be able to be straightforwardly applied to a specific patient, because the diagnostic results are based on averages, which result in a rough solution. Patient Specific Modeling (PSM), using patient-specific medical image data (e.g. CT, MRI, or Ultrasound), could deliver a computational anatomical model. It provides the potential for surgeons to practice the operation procedures for a particular patient, which will improve the accuracy of diagnosis and treatment, thus enhance the prophetic ability of VR simulation framework and raise the patient care. This paper presents a general review based on existing literature of patient specific surgical simulation on data acquisition, medical image segmentation, computational mesh generation, and soft tissue real time simulation
A Built-In Strategy for Containment of Transgenic Plants: Creation of Selectively Terminable Transgenic Rice
Plant transgenic technology has been widely utilized for engineering crops for trait improvements and for production of high value proteins such as pharmaceuticals. However, the unintended spreading of commercial transgenic crops by pollination and seed dispersal is a major concern for environmental and food safety. Simple and reliable containment strategies for transgenes are highly desirable. Here we report a novel method for creating selectively terminable transgenic rice. In this method, the gene(s) of interest is tagged with a RNA interference cassette, which specifically suppresses the expression of the bentazon detoxification enzyme CYP81A6 and thus renders transgenic rice to be sensitive to bentazon, a herbicide used for rice weed control. We generated transgenic rice plants by this method using a new glyphosate resistant 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene from Pesudomonas putida as the gene of interest, and demonstrated that these transgenic rice plants were highly sensitive to bentazon but tolerant to glyphosate, which is exactly the opposite of conventional rice. Field trial of these transgenic rice plants further confirmed that they can be selectively killed at 100% by one spray of bentazon at a regular dose used for conventional rice weed control. Furthermore, we found that the terminable transgenic rice created in this study shows no difference in growth, development and yield compared to its non-transgenic control. Therefore, this method of creating transgenic rice constitutes a novel strategy of transgene containment, which appears simple, reliable and inexpensive for implementation
On the effects of the fix geometric constraint in 2D profiles on the reusability of parametric 3D CAD models
[EN] In order to be reusable, history-based feature-based parametric CAD models must reliably allow for modifications while maintaining their original design intent. In this paper, we demonstrate that relations that fix the location of geometric entities relative to the reference system produce inflexible profiles that reduce model reusability. We present the results of an experiment where novice students and expert CAD users performed a series of modifications in different versions of the same 2D profile, each defined with an increasingly higher number of fix geometric constraints. Results show that the amount of fix constraints in a 2D profile correlates with the time required to complete reusability tasks, i.e., the higher the number of fix constraints in a 2D profile, the less flexible and adaptable the profile becomes to changes. In addition, a pilot software tool to automatically track this type of constraints was developed and tested. Results suggest that the detection of fix constraint overuse may result in a new metric to assess poor quality models with low reusability. The tool provides immediate feedback for preventing high semantic level quality errors, and assistance to CAD users. Finally, suggestions are introduced on how to convert fix constraints in 2D profiles into a negative metric of 3D model quality.The authors would like to thank Raquel Plumed for her support in the statistical analysis. This work has been partially funded by Grant UJI-A02017-15 (Universitat Jaume I) and DPI201784526-R (MINECO/AEI/FEDER, UE), project CAL-MBE. The authors also wish to thank the editor and reviewers for their valuable comments and suggestions that helped us improve the quality of the paper.González-Lluch, C.; Company, P.; Contero, M.; Pérez Lopez, DC.; Camba, JD. (2019). On the effects of the fix geometric constraint in 2D profiles on the reusability of parametric 3D CAD models. International Journal of Technology and Design Education. 29(4):821-841. https://doi.org/10.1007/s10798-018-9458-zS821841294Ait-Aoudia, S., & Foufou, S. (2010). A 2D geometric constraint solver using a graph reduction method. Advances in Engineering Software, 41(10), 1187–1194. https://doi.org/10.1016/j.advengsoft.2010.07.008 .Ault, H. K. (1999). Using geometric constraints to capture design intent. Journal for Geometry and Graphics, 3(1), 39–45.Ault, H. K. (2004). Over-constrained, under-constrained or just right? Goldilocks evaluates DOF of sketched profiles. Paper presented at American Society for Engineering Education, 59th annual midyear meeting past, present and future? Williamsburg, November 21–23.Ault, H. K., Bu, L., & Liu, K. (2014). Solid modeling strategies-analyzing student choices. Paper presented at proceedings of the 121st ASEE annual conference and exposition, Indianapolis, June 15–18.Ault, H. K., & Fraser, A. (2013). A comparison of manual vs. online grading for solid models. Paper presented at 120th ASEE annual conference and exposition, Atlanta, GA, June 23–26, 2013, Paper ID #7233.Barbero, B. R., Pedrosa, C. M., & Samperio, R. Z. (2016). Learning CAD at university through summaries of the rules of design intent. International Journal of Technology and Design Education. https://doi.org/10.1007/s10798-016-9358-z .Bodein, Y., Bertrand, R., & Caillaud, E. (2014). Explicit reference modeling methodology in parametric CAD system. Computers in Industry, 65(1), 136–147. https://doi.org/10.1016/j.compind.2013.08.004 .Bouma, W., Fudos, I., Hoffmann, C., Cai, J., & Paige, R. (1995). Geometric constraint solver. Computer-Aided Design, 27(6), 487–501. https://doi.org/10.1016/0010-4485(94)00013-4 .Briggs, J. C., Hepworth, A. I., Stone, B. R., Cobum, J. Q., Jensen, C. G., & Red, E. (2015). Integrated, synchronous multi-user design and analysis. Journal of Computing and Information Science in Engineering, 15(3), 031002. https://doi.org/10.1115/1.4029801 .Buckley, J., Seery, N., & Canty, D. (2017). Heuristics and CAD modelling: An examination of student behaviour during problem solving episodes within CAD modelling activities. International Journal of Technology and Design Education. https://doi.org/10.1007/s10798-017-9423-2 .Camba, J. D., & Contero, M. (2015). Assessing the impact of geometric design intent annotations on parametric model alteration activities. Computers in Industry, 71, 35–45. https://doi.org/10.1016/j.compind.2015.03.006 .Camba, J. D., Contero, M., & Company, P. (2016). Parametric CAD modeling: An analysis of strategies for design reusability. Computer-Aided Design, 74, 18–31. https://doi.org/10.1016/j.cad.2016.01.003 .Camba, J. D., Contero, M., & Company, P. (2017). CAD reusability and the role of modeling information in the MBE context. Model-based enterprise summit 2017. National Institute of Standards and Technology (NIST), Gaithersburg, MD, April 3–7. MBE17-020. https://www.nist.gov/file/361581 .Cheng, Z., & Ma, Y. (2017). A functional feature modeling method. Advanced Engineering Informatics, 33, 1–15. https://doi.org/10.1016/j.aei.2017.04.003 .Cheng, Z., Xie, Y., & Ma, Y. (2018). Graph centrality analysis of feature dependencies to unveil modeling intents. Computer-Aided Design and Applications. https://doi.org/10.1080/16864360.2018.1441236 .Chester, I. (2007). Teaching for CAD expertise. International Journal of Technology and Design Education, 17, 23–35. https://doi.org/10.1007/s10798-006-9015-z .Company, P., Contero, M., Otey, J., & Plumed, R. (2015). Approach for developing coordinated rubrics to convey quality criteria in CAD training. Computer-Aided Design, 63, 101–117. https://doi.org/10.1016/j.cad.2014.10.00 .Company, P., & González-Lluch, C. (2013). CAD 3D con SolidWorks ® Tomo I: Diseño básico. Publicacions de la Universitat Jaume I. (Colección Sapientia, Núm. 86). http://cad3dconsolidworks.uji.es .Contero, M., Company, P., Vila, C., & Aleixos, N. (2002). Product data quality and collaborative engineering. IEEE Computer Graphics Applications, 22(3), 32–42. https://doi.org/10.1109/MCG.2002.999786 .Dixon, B. M., & Dannenhoffer, J. F., III. (2014). Geometric sketch constraint solving with user feedback. Journal of Aerospace Information Systems, 11(5), 316–325. https://doi.org/10.2514/1.I010110 .Fudos, I., & Hoffmann, C. M. (1997). A graph-constructive approach to solving systems of geometric constraints. ACM Transactions on Graphics, 16(2), 179–216. https://doi.org/10.1145/248210.248223 .Ge, J. X., Chou, S. C., & Gao, X. S. (1999). Geometric constraint satisfaction using optimization methods. Computer-Aided Design, 31(14), 867–879. https://doi.org/10.1016/S0010-4485(99)00074-3 .González-Lluch, C., Company, P., Contero, M., Camba, J. D., & Colom, J. (2017a). A case study on the use of model quality testing tools for the assessment of MCAD models and drawings. International Journal of Engineering Education, 33(5), 1643–1653.González-Lluch, C., Company, P., Contero, M., Camba, J. D., & Plumed, R. (2017b). A survey on 3D CAD model quality assurance and testing tools. Computer-Aided Design, 83, 64–79. https://doi.org/10.1016/j.cad.2016.10.003 .Hamade, R. F. (2009). Profiling the desirable CAD trainee: Technical background, personality attributes, and learning preferences. Journal of Mechanical Design, 131(12), 121009–121019. https://doi.org/10.1115/1.4000455 .Hekman, K. A., & Gordon, M. T. (2013). Automated grading of first year student CAD work. Paper presented at the 120th ASEE annual conference and exposition 2013, Atlanta, GA, June 23–26. Paper ID #6379.Hepworth, A., Tew, K., Trent, M., Ricks, R., Jensen, C. G., & Red, E. R. (2014). Model consistency and conflict resolution with data preservation in multi-user computer aided design. Journal of Computing and Information Science in Engineering, 14(2), 021008. https://doi.org/10.1115/1.4026553 .Jackson, C., & Buxton, M. (2007). The design reuse benchmark report: Seizing the opportunity to shorten product development. Boston: Aberdeen Group.Joan-Arinyo, R., Soto-Riera, A., Vila-Marta, S., & Vilaplana-Pastó, J. (2003). Transforming an under-constrained geometric constraint problem into a well-constrained one. Paper presented at proceedings of ACM SM03, Seatle, June 16–20.Kirstukas, S. J. (2016). Development and evaluation of a computer program to assess student CAD models. Paper presented at ASEE annual conference and exposition, New Orleans, June 26.Kramer, G. (1991). Using degrees of freedom analysis to solve geometric constraint systems. Paper presented at proceedings of the first ACM symposium on solid modeling foundations and CAD/CAM applications 1991, Austin, June 05–07.Kwon, S., Kim, B. C., Mun, D., & Han, S. (2015). Graph-based simplification of feature-based three-dimensional computer-aided design models for preserving connectivity. Journal of Computing and Information Science in Engineering, 15(3), 031010. https://doi.org/10.1115/1.4030748 .Leea, J. Y., & Kimb, K. (1998). A 2-D geometric constraint solver using DOF-based graph reduction. Computer-Aided Design, 30(11), 883–896. https://doi.org/10.1016/S0010-4485(98)00045-1 .Mata Burgarolas, N. (1997). Solving incidence and tangency constraints in 2D. Technical report LSI-97-3R, Departament LiSI, Universitat Politècnica de Catalunya.Petrina, S. (2003). Two cultures of technical courses and discourses: The case of computer aided design. International Journal of Technology and Design Education, 13, 47–73.Race, P. (2001). The lecturers toolkit—A practical guide to learning, teaching and assessment. Great Britain: Glasgow.Red, E., French, D., Jensen, G., Walker, S. S., & Madsen, P. (2013). Emerging design methods and tools in collaborative product development. Journal of Computing and Information Science in Engineering, 13(3), 031001. https://doi.org/10.1115/1.4023917 .Robertson, B. F., Walther, J., & Radcliffe, D. (2007). Creativity and the use of CAD tools: Lessons for engineering design education from industry. Journal of Mechanical Design, 129(7), 753–760. https://doi.org/10.1115/1.2722329 .Stone, B., Salmon, J., Eves, K., Killian, M., Wright, L., Oldroyd, J., et al. (2017). A multi-user computer-aided design competition: Experimental findings and analysis of team-member dynamics. Journal of Computing and Information Science in Engineering, 17(3), 031003. https://doi.org/10.1115/1.4035674 .Summers, J. D., & Shah, J. J. (2010). Mechanical engineering design complexity metrics: Size, coupling, and solvability. Journal of Mechanical Design, 132(2), 21004–21015. https://doi.org/10.1115/1.4000759 .Szewczyk, J. (2003). Difficulties with the novices’ comprehension of the computer-aided design (CAD) interface: Understanding visual representations of CAD tools. Journal of Engineering Design, 14(2), 169–185. https://doi.org/10.1080/0954482031000091491
Relevance Feedback for Shape-based Pathology in Spine X-ray Image Retrieval
Relevance feedback (RF) has become an active research area in Content-based Image Retrieval (CBIR). RF attempts to bridge the gap between low-level image features and high-level human visual perception by analyzing and employing user feedback in an effort to refine the retrieval results to better reflect individual user preference. Need for overcoming this gap is more evident in medical image retrieval due to commonly found characteristics in medical images, viz., (1) images belonging to different pathological categories exhibit subtle differences, and (2) the subjective nature of images often elicits different opinions, even among experts. The National Library of Medicine maintains a collection of digitized spine X-rays from the second National Health and Nutrition Examination Survey (NHANES II). A pathology found frequently in these images is the Anterior Osteophyte (AO), which is of interest to researchers in bone morphometry and osteoarthritis. Since this pathology is manifested as deviation in shape, we have proposed the use of partial shape matching (PSM) methods for pathology-specific spinal X-ray image retrieval. Shape matching tends to suffer from the variability in the pathology expressed by the vertebral shape. This paper describes a novel weight-updating approach to RF. The algorithm was tested and evaluated on a subset of data selected from the image collection. The ground truth was established using Macnab’s classification to determine pathology type and a grading system developed by us to express the pathology severity. Experimental results show nearly 20 % overall improvement on retrievin
Design of an Ultrawideband CPW-Fed Monopole Antenna with a Band-Notch Function
In this paper, a CPW-fed monopole antenna for ultra wideband (UWB) applications using band-notch characteristics with size of (24×24×1.6 mm³ ) is presented. The antenna is designed for operation across the entire UWB from 3.1 to 10.6 GHz with band-notch in 5-6 GHz, by inserting an H-shaped slot on the CPW staircase feed line. The proposed antenna has a reflection coefficient below -10 dB through the frequency band. Also, reasonable gain values and good radiation pattern over the same frequency band have been observed. Details of the proposed antenna and experimental results are discussed and parametric study is presented
PROCOAGULANT TISSUE FACTOR EXPRESSION IS LINKED TO DISTINCT SUBTYPES IN GLIOBLASTOMA AND PLAYS A ROLE IN TUMOR DORMANCY
- …
