1,163 research outputs found
Semiclassical Theory of Bardeen-Cooper-Schrieffer Pairing-Gap Fluctuations
Superfluidity and superconductivity are genuine many-body manifestations of
quantum coherence. For finite-size systems the associated pairing gap
fluctuates as a function of size or shape. We provide a parameter free
theoretical description of pairing fluctuations in mesoscopic systems
characterized by order/chaos dynamics. The theory accurately describes
experimental observations of nuclear superfluidity (regular system), predicts
universal fluctuations of superconductivity in small chaotic metallic grains,
and provides a global analysis in ultracold Fermi gases.Comment: 4 pages, 2 figure
Average ground-state energy of finite Fermi systems
Semiclassical theories like the Thomas-Fermi and Wigner-Kirkwood methods give
a good description of the smooth average part of the total energy of a Fermi
gas in some external potential when the chemical potential is varied. However,
in systems with a fixed number of particles N, these methods overbind the
actual average of the quantum energy as N is varied. We describe a theory that
accounts for this effect. Numerical illustrations are discussed for fermions
trapped in a harmonic oscillator potential and in a hard wall cavity, and for
self-consistent calculations of atomic nuclei. In the latter case, the
influence of deformations on the average behavior of the energy is also
considered.Comment: 10 pages, 8 figure
Crystal properties of eigenstates for quantum cat maps
Using the Bargmann-Husimi representation of quantum mechanics on a torus
phase space, we study analytically eigenstates of quantized cat maps. The
linearity of these maps implies a close relationship between classically
invariant sublattices on the one hand, and the patterns (or `constellations')
of Husimi zeros of certain quantum eigenstates on the other hand. For these
states, the zero patterns are crystals on the torus. As a consequence, we can
compute explicit families of eigenstates for which the zero patterns become
uniformly distributed on the torus phase space in the limit . This
result constitutes a first rigorous example of semi-classical equidistribution
for Husimi zeros of eigenstates in quantized one-dimensional chaotic systems.Comment: 43 pages, LaTeX, including 7 eps figures Some amendments were made in
order to clarify the text, mainly in the 4 first sections. Figures are
unchanged. To be published in: Nonlinearit
NMR study of electronic correlations in Mn-doped Ba(Fe 1 − x Co x ) 2 As 2 and BaFe 2 (As 1 − x P x ) 2
International audienceWe probe the real space electronic response to a local magnetic impurity in isovalent and het-erovalent doped BaFe2As2 (122) using Nuclear Magnetic Resonance (NMR). The local moments carried by Mn impurities doped into Ba(Fe1−xCox)2As2 (Co-122) and BaFe2(As1−xPx)2 (P-122) at optimal doping induce a spin polarization in the vicinity of the impurity. The amplitude, shape and extension of this polarisation is given by the real part of the susceptibility χ (r) of FeAs layers, and is consequently related to the nature and strength of the electronic correlations present in the system. We study this polarisation using 75 As NMR in Co-122 and both 75 As and 31 P NMR in P-122. The NMR spectra of Mn-doped materials is made of two essential features. First is a satellite line associated with nuclei located as nearest neighbor of Mn impurities. The analysis of the temperature dependence of the shift of this satellite line shows that Mn local moments behave as isolated Curie moments. The second feature is a temperature dependent broadening of the central line. We show that the broadening of the central line follows the susceptibility of Mn local moments, as expected from typical RKKY-like interactions. This demonstrates that the susceptibility χ (r) of FeAs layers does not make significant contribution to the temperature dependent broadening of the central line. χ (r) is consequently only weakly temperature dependent in optimally doped Co-122 and P-122. This behaviour is in contrast with that of strongly correlated materials such as under-doped cuprate high-Tc superconductors where the central line broadens faster than the impurity susceptibility grows, because of the development of strong magnetic correlations when T is lowered. Moreover, the FeAs layer susceptibility is found quantitatively similar in both heterovalent doped and isolvalent doped BaFe2As2
Band Distributions for Quantum Chaos on the Torus
Band distributions (BDs) are introduced describing quantization in a toral
phase space. A BD is the uniform average of an eigenstate phase-space
probability distribution over a band of toral boundary conditions. A general
explicit expression for the Wigner BD is obtained. It is shown that the Wigner
functions for {\em all} of the band eigenstates can be reproduced from the
Wigner BD. Also, BDs are shown to be closer to classical distributions than
eigenstate distributions. Generalized BDs, associated with sets of adjacent
bands, are used to extend in a natural way the Chern-index characterization of
the classical-quantum correspondence on the torus to arbitrary rational values
of the scaled Planck constant.Comment: 12 REVTEX page
Chemical potential oscillations from a single nodal pocket in the underdoped high-Tc superconductor YBa2Cu3O6+x
The mystery of the normal state in the underdoped cuprates has deepened with
the use of newer and complementary experimental probes. While photoemission
studies have revealed solely `Fermi arcs' centered on nodal points in the
Brillouin zone at which holes aggregate upon doping, more recent quantum
oscillation experiments have been interpreted in terms of an ambipolar Fermi
surface, that includes sections containing electron carriers located at the
antinodal region. To address the question of whether an ambipolar Fermi surface
truly exists, here we utilize measurements of the second harmonic quantum
oscillations, which reveal that the amplitude of these oscillations arises
mainly from oscillations in the chemical potential, providing crucial
information on the nature of the Fermi surface in underdoped YBa2Cu3O6+x. In
particular, the detailed relationship between the second harmonic amplitude and
the fundamental amplitude of the quantum oscillations leads us to the
conclusion that there exists only a single underlying quasi-two dimensional
Fermi surface pocket giving rise to the multiple frequency components observed
via the effects of warping, bilayer splitting and magnetic breakdown. A range
of studies suggest that the pocket is most likely associated with states near
the nodal region of the Brillouin zone of underdoped YBa2Cu3O6+x at high
magnetic fields.Comment: 7 pages, 4 figure
Correlations and fluctuations of a confined electron gas
The grand potential and the response of a phase-coherent confined noninteracting electron gas depend
sensitively on chemical potential or external parameter . We compute
their autocorrelation as a function of , and temperature. The result
is related to the short-time dynamics of the corresponding classical system,
implying in general the absence of a universal regime. Chaotic, diffusive and
integrable motions are investigated, and illustrated numerically. The
autocorrelation of the persistent current of a disordered mesoscopic ring is
also computed.Comment: 12 pages, 1 figure, to appear in Phys. Rev.
Shubnikov-de Haas oscillations in YBa_2Cu_4O_8
We report the observation of Shubnikov-de Haas oscillations in the underdoped
cuprate superconductor YBaCuO (Y124). For field aligned along the
c-axis, the frequency of the oscillations is T, which corresponds
to % of the total area of the first Brillouin zone. The effective
mass of the quasiparticles on this orbit is measured to be times
the free electron mass. Both the frequency and mass are comparable to those
recently observed for ortho-II YBaCuO (Y123-II). We show that
although small Fermi surface pockets may be expected from band structure
calculations in Y123-II, no such pockets are predicted for Y124. Our results
therefore imply that these small pockets are a generic feature of the copper
oxide plane in underdoped cuprates.Comment: v2: Version of paper accepted for publication in Physical Review
Letters. Only minor changes to the text and reference
Evidence for a small hole pocket in the Fermi surface of underdoped YBa2Cu3Oy
The Fermi surface of a metal is the fundamental basis from which its
properties can be understood. In underdoped cuprate superconductors, the Fermi
surface undergoes a reconstruction that produces a small electron pocket, but
whether there is another, as yet undetected portion to the Fermi surface is
unknown. Establishing the complete topology of the Fermi surface is key to
identifying the mechanism responsible for its reconstruction. Here we report
the discovery of a second Fermi pocket in underdoped YBa2Cu3Oy, detected as a
small quantum oscillation frequency in the thermoelectric response and in the
c-axis resistance. The field-angle dependence of the frequency demonstrates
that it is a distinct Fermi surface and the normal-state thermopower requires
it to be a hole pocket. A Fermi surface consisting of one electron pocket and
two hole pockets with the measured areas and masses is consistent with a
Fermi-surface reconstruction caused by the charge-density-wave order observed
in YBa2Cu3Oy, provided other parts of the reconstructed Fermi surface are
removed by a separate mechanism, possibly the pseudogap.Comment: 23 pages, 5 figure
- …
