1,208 research outputs found

    Semantic-driven matchmaking of web services using case-based reasoning

    Get PDF
    With the rapid proliferation of Web services as the medium of choice to securely publish application services beyond the firewall, the importance of accurate, yet flexible matchmaking of similar services gains importance both for the human user and for dynamic composition engines. In this paper, we present a novel approach that utilizes the case based reasoning methodology for modelling dynamic Web service discovery and matchmaking. Our framework considers Web services execution experiences in the decision making process and is highly adaptable to the service requester constraints. The framework also utilises OWL semantic descriptions extensively for implementing both the components of the CBR engine and the matchmaking profile of the Web services

    Reconciling long-term cultural diversity and short-term collective social behavior

    Get PDF
    An outstanding open problem is whether collective social phenomena occurring over short timescales can systematically reduce cultural heterogeneity in the long run, and whether offline and online human interactions contribute differently to the process. Theoretical models suggest that short-term collective behavior and long-term cultural diversity are mutually excluding, since they require very different levels of social influence. The latter jointly depends on two factors: the topology of the underlying social network and the overlap between individuals in multidimensional cultural space. However, while the empirical properties of social networks are well understood, little is known about the large-scale organization of real societies in cultural space, so that random input specifications are necessarily used in models. Here we use a large dataset to perform a high-dimensional analysis of the scientific beliefs of thousands of Europeans. We find that inter-opinion correlations determine a nontrivial ultrametric hierarchy of individuals in cultural space, a result unaccessible to one-dimensional analyses and in striking contrast with random assumptions. When empirical data are used as inputs in models, we find that ultrametricity has strong and counterintuitive effects, especially in the extreme case of long-range online-like interactions bypassing social ties. On short time-scales, it strongly facilitates a symmetry-breaking phase transition triggering coordinated social behavior. On long time-scales, it severely suppresses cultural convergence by restricting it within disjoint groups. We therefore find that, remarkably, the empirical distribution of individuals in cultural space appears to optimize the coexistence of short-term collective behavior and long-term cultural diversity, which can be realized simultaneously for the same moderate level of mutual influence

    Sustaining the Internet with Hyperbolic Mapping

    Full text link
    The Internet infrastructure is severely stressed. Rapidly growing overheads associated with the primary function of the Internet---routing information packets between any two computers in the world---cause concerns among Internet experts that the existing Internet routing architecture may not sustain even another decade. Here we present a method to map the Internet to a hyperbolic space. Guided with the constructed map, which we release with this paper, Internet routing exhibits scaling properties close to theoretically best possible, thus resolving serious scaling limitations that the Internet faces today. Besides this immediate practical viability, our network mapping method can provide a different perspective on the community structure in complex networks

    Partisan Asymmetries in Online Political Activity

    Get PDF
    We examine partisan differences in the behavior, communication patterns and social interactions of more than 18,000 politically-active Twitter users to produce evidence that points to changing levels of partisan engagement with the American online political landscape. Analysis of a network defined by the communication activity of these users in proximity to the 2010 midterm congressional elections reveals a highly segregated, well clustered partisan community structure. Using cluster membership as a high-fidelity (87% accuracy) proxy for political affiliation, we characterize a wide range of differences in the behavior, communication and social connectivity of left- and right-leaning Twitter users. We find that in contrast to the online political dynamics of the 2008 campaign, right-leaning Twitter users exhibit greater levels of political activity, a more tightly interconnected social structure, and a communication network topology that facilitates the rapid and broad dissemination of political information.Comment: 17 pages, 10 figures, 6 table

    Network Cosmology

    Full text link
    Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology

    Social determinants of content selection in the age of (mis)information

    Full text link
    Despite the enthusiastic rhetoric about the so called \emph{collective intelligence}, conspiracy theories -- e.g. global warming induced by chemtrails or the link between vaccines and autism -- find on the Web a natural medium for their dissemination. Users preferentially consume information according to their system of beliefs and the strife within users of opposite narratives may result in heated debates. In this work we provide a genuine example of information consumption from a sample of 1.2 million of Facebook Italian users. We show by means of a thorough quantitative analysis that information supporting different worldviews -- i.e. scientific and conspiracist news -- are consumed in a comparable way by their respective users. Moreover, we measure the effect of the exposure to 4709 evidently false information (satirical version of conspiracy theses) and to 4502 debunking memes (information aiming at contrasting unsubstantiated rumors) of the most polarized users of conspiracy claims. We find that either contrasting or teasing consumers of conspiracy narratives increases their probability to interact again with unsubstantiated rumors.Comment: misinformation, collective narratives, crowd dynamics, information spreadin

    Does \u2018bigger\u2019mean \u2018better\u2019? Pitfalls and shortcuts associated with big data for social research

    Get PDF
    \u2018Big data is here to stay.\u2019 This key statement has a double value: is an assumption as well as the reason why a theoretical reflection is needed. Furthermore, Big data is something that is gaining visibility and success in social sciences even, overcoming the division between humanities and computer sciences. In this contribution some considerations on the presence and the certain persistence of Big data as a socio-technical assemblage will be outlined. Therefore, the intriguing opportunities for social research linked to such interaction between practices and technological development will be developed. However, despite a promissory rhetoric, fostered by several scholars since the birth of Big data as a labelled concept, some risks are just around the corner. The claims for the methodological power of bigger and bigger datasets, as well as increasing speed in analysis and data collection, are creating a real hype in social research. Peculiar attention is needed in order to avoid some pitfalls. These risks will be analysed for what concerns the validity of the research results \u2018obtained through Big data. After a pars distruens, this contribution will conclude with a pars construens; assuming the previous critiques, a mixed methods research design approach will be described as a general proposal with the objective of stimulating a debate on the integration of Big data in complex research projecting

    Forecasting in the light of Big Data

    Get PDF
    Predicting the future state of a system has always been a natural motivation for science and practical applications. Such a topic, beyond its obvious technical and societal relevance, is also interesting from a conceptual point of view. This owes to the fact that forecasting lends itself to two equally radical, yet opposite methodologies. A reductionist one, based on the first principles, and the naive inductivist one, based only on data. This latter view has recently gained some attention in response to the availability of unprecedented amounts of data and increasingly sophisticated algorithmic analytic techniques. The purpose of this note is to assess critically the role of big data in reshaping the key aspects of forecasting and in particular the claim that bigger data leads to better predictions. Drawing on the representative example of weather forecasts we argue that this is not generally the case. We conclude by suggesting that a clever and context-dependent compromise between modelling and quantitative analysis stands out as the best forecasting strategy, as anticipated nearly a century ago by Richardson and von Neumann

    From Social Data Mining to Forecasting Socio-Economic Crisis

    Full text link
    Socio-economic data mining has a great potential in terms of gaining a better understanding of problems that our economy and society are facing, such as financial instability, shortages of resources, or conflicts. Without large-scale data mining, progress in these areas seems hard or impossible. Therefore, a suitable, distributed data mining infrastructure and research centers should be built in Europe. It also appears appropriate to build a network of Crisis Observatories. They can be imagined as laboratories devoted to the gathering and processing of enormous volumes of data on both natural systems such as the Earth and its ecosystem, as well as on human techno-socio-economic systems, so as to gain early warnings of impending events. Reality mining provides the chance to adapt more quickly and more accurately to changing situations. Further opportunities arise by individually customized services, which however should be provided in a privacy-respecting way. This requires the development of novel ICT (such as a self- organizing Web), but most likely new legal regulations and suitable institutions as well. As long as such regulations are lacking on a world-wide scale, it is in the public interest that scientists explore what can be done with the huge data available. Big data do have the potential to change or even threaten democratic societies. The same applies to sudden and large-scale failures of ICT systems. Therefore, dealing with data must be done with a large degree of responsibility and care. Self-interests of individuals, companies or institutions have limits, where the public interest is affected, and public interest is not a sufficient justification to violate human rights of individuals. Privacy is a high good, as confidentiality is, and damaging it would have serious side effects for society.Comment: 65 pages, 1 figure, Visioneer White Paper, see http://www.visioneer.ethz.c
    corecore